A350501 Table read by antidiagonals: T(n,k) (n >= 3, k >= 0) is the number of vertices in a regular n-gon after k generations of mitosis.
3, 3, 4, 3, 5, 5, 3, 5, 10, 6, 3, 5, 15, 19, 7, 3, 5, 20, 25, 42, 8, 3, 5, 25, 25, 119, 57, 9, 3, 5, 30, 25, 231, 81, 135, 10, 3, 5, 35, 25, 378, 81, 504, 171, 11, 3, 5, 40, 25, 560, 81, 1017, 311, 341, 12, 3, 5, 45, 25, 777, 81, 1620, 361, 1309, 313, 13
Offset: 3
Examples
The table begins: . | Number of vertices after k generations n\k | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... ---------------------------------------------------------------------------------- 3 | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ... 4 | 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, ... 5 | 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, ... 6 | 6, 19, 25, 25, 25, 25, 25, 25, 25, 25, ... 7 | 7, 42, 119, 231, 378, 560, 777, 1029, 1316, 1638, ... 8 | 8, 57, 81, 81, 81, 81, 81, 81, 81, 81, ... 9 | 9, 135, 504, 1017, 1620, 2313, 3096, 3969, 4932, 5985, ... 10 | 10, 171, 311, 361, 411, 461, 511, 561, 611, 661, ... 11 | 11, 341, 1309, 2629, 4169, 5929, 7909, 10109, 12529, 1516, ... 12 | 12, 313, 481, 481, 481, 481, 481, 481, 481, 481, ... 13 | 13, 728, 3601, 8125, 13624, 20098, 27547, 35971, 45370, 55744, ... 14 | 14, 771, 1639, 2129, 2619, 3109, 3599, 4089, 4579, 5069, ... 15 | 15, 1380, 5985, 13125, 22185, 32970, 45480, 59715, 75675, 93360, ... 16 | 16, 1393, 3329, 4257, 4897, 5537, 6177, 6817, 7457, 8097, ... 17 | 17, 2397, 12070, 28628, 50558, 77758, 110228, 147968, 190978, 239258, ... 18 | 18, 1855, 4033, 5815, 7363, 8713, 10063, 11413, 12763, 14113, ... 19 | 19, 3895, 19418, 44992, 77786, 117800, 165034, 219488, 281162, 350056, ... 20 | 20, 3861, 11261, 16641, 20741, 24841, 28941, 33041, 37141, 41241, ... 21 | 21, 6006, 26019, 55734, 92484, 136269, 187089, 244944, 309834, 381759, ... 22 | 22, 5963, 18107, 27413, 34343, 41273, 48203, 55133, 62063, 68993, ... .
Links
- Scott R. Shannon, Illustration of T(10,1).
- Scott R. Shannon, Illustration of T(10,2).
- Scott R. Shannon, Illustration of T(10,3).
- Scott R. Shannon, Illustration of T(11,1).
- Scott R. Shannon, Illustration of T(11,2).
- Scott R. Shannon, Illustration of T(11,3).
Comments