cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350519 a(n) = A(n,n) where A(1,n) = A(n,1) = prime(n+1) and A(m,n) = A(m-1,n) + A(m,n-1) + A(m-1,n-1) for m > 1 and n > 1.

Original entry on oeis.org

3, 13, 63, 325, 1719, 9237, 50199, 275149, 1518263, 8422961, 46935819, 262512929, 1472854451, 8285893713, 46723439019, 264009961733, 1494486641911, 8473508472009, 48112827862527, 273541139290857, 1557023508876891, 8872219429659729, 50605041681538595, 288897992799897481
Offset: 1

Views

Author

Yigit Oktar, Jan 02 2022

Keywords

Comments

Replacing prime(n+1) by other functions f(n) we can get many other sequences. For example, with f(n) = 1 we get A001850.

Examples

			The two-dimensional recurrence A(m,n) can be depicted in matrix form as
   3   5   7   11   13    17    19 ...
   5  13  25   43   67    97   133 ...
   7  25  63  131  241   405   635 ...
  11  43 131  325  697  1343  2383 ...
  13  67 241  697 1719  3759  7485 ...
  17  97 405 1343 3759  9237 20481 ...
  19 133 635 2383 7485 20481 50199 ...
  ...
and then a(n) is the main diagonal of this matrix, A(n,n).
		

Crossrefs

Cf. A000040, A001850, A002002, A050151, A344576 (see comments).

Programs

  • MATLAB
    clear all
    close all
    sz = 14
    f = zeros(sz,sz);
    pp = primes(50);
    f(1,:) = pp(2:end);
    f(:,1) = pp(2:end);
    for m=2:sz
        for  n=2:sz
            f(m,n) = f(m-1,n-1)+f(m,n-1)+f(m-1,n);
        end
    end
    an = []
    for n=1:sz
        an = [an f(n,n)];
    end
    S = sprintf('%i,',an);
    S = S(1:end-1)
  • Mathematica
    f[1,1]=3;f[m_,1]:=Prime[m+1];f[1,n_]:=Prime[n+1];f[m_,n_]:=f[m,n]=f[m-1,n]+f[m,n-1]+f[m-1,n-1];Table[f[n,n],{n,25}] (* Giorgos Kalogeropoulos, Jan 03 2022 *)