A350519 a(n) = A(n,n) where A(1,n) = A(n,1) = prime(n+1) and A(m,n) = A(m-1,n) + A(m,n-1) + A(m-1,n-1) for m > 1 and n > 1.
3, 13, 63, 325, 1719, 9237, 50199, 275149, 1518263, 8422961, 46935819, 262512929, 1472854451, 8285893713, 46723439019, 264009961733, 1494486641911, 8473508472009, 48112827862527, 273541139290857, 1557023508876891, 8872219429659729, 50605041681538595, 288897992799897481
Offset: 1
Keywords
Examples
The two-dimensional recurrence A(m,n) can be depicted in matrix form as 3 5 7 11 13 17 19 ... 5 13 25 43 67 97 133 ... 7 25 63 131 241 405 635 ... 11 43 131 325 697 1343 2383 ... 13 67 241 697 1719 3759 7485 ... 17 97 405 1343 3759 9237 20481 ... 19 133 635 2383 7485 20481 50199 ... ... and then a(n) is the main diagonal of this matrix, A(n,n).
Programs
-
MATLAB
clear all close all sz = 14 f = zeros(sz,sz); pp = primes(50); f(1,:) = pp(2:end); f(:,1) = pp(2:end); for m=2:sz for n=2:sz f(m,n) = f(m-1,n-1)+f(m,n-1)+f(m-1,n); end end an = [] for n=1:sz an = [an f(n,n)]; end S = sprintf('%i,',an); S = S(1:end-1)
-
Mathematica
f[1,1]=3;f[m_,1]:=Prime[m+1];f[1,n_]:=Prime[n+1];f[m_,n_]:=f[m,n]=f[m-1,n]+f[m,n-1]+f[m-1,n-1];Table[f[n,n],{n,25}] (* Giorgos Kalogeropoulos, Jan 03 2022 *)
Comments