cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A350529 Square array read by antidiagonals downwards: T(n,k) is the number of sequences of length n with terms in 1..k such that no iterated difference is zero, n, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 6, 2, 0, 0, 1, 5, 12, 10, 2, 0, 0, 1, 6, 20, 32, 16, 2, 0, 0, 1, 7, 30, 72, 86, 26, 2, 0, 0, 1, 8, 42, 138, 256, 232, 42, 2, 0, 0, 1, 9, 56, 234, 624, 906, 622, 68, 2, 0, 0
Offset: 0

Views

Author

Pontus von Brömssen, Jan 03 2022

Keywords

Comments

For fixed n, T(n,k) is a quasi-polynomial of degree n in k. For example, T(4,k) = k^4 - (116/27)*k^3 + (25/3)*k^2 + b(k)*k + c(k), where b and c are periodic with period 6.

Examples

			  n\k|  0  1  2   3     4      5       6        7         8         9         10
  ---+--------------------------------------------------------------------------
   0 |  1  1  1   1     1      1       1        1         1         1          1
   1 |  0  1  2   3     4      5       6        7         8         9         10
   2 |  0  0  2   6    12     20      30       42        56        72         90
   3 |  0  0  2  10    32     72     138      234       368       544        770
   4 |  0  0  2  16    86    256     624     1278      2370      4030       6462
   5 |  0  0  2  26   232    906    2790     6900     15096     29536      53678
   6 |  0  0  2  42   622   3180   12366    36964     95494    215146     443464
   7 |  0  0  2  68  1662  11116   54572   197294    601986   1562274    3652850
   8 |  0  0  2 110  4426  38754  240278  1051298   3788268  11325490   30041458
   9 |  0  0  2 178 11774 134902 1056546  5595236  23814458  82024662  246853482
  10 |  0  0  2 288 31316 469306 4643300 29762654 149631992 593798912 2027577296
For n = 4 and k = 3, the following T(4,3) = 16 sequences are counted: 1212, 1213, 1312, 1313, 1323, 2121, 2131, 2132, 2312, 2313, 2323, 3121, 3131, 3132, 3231, 3232.
		

Crossrefs

Rows: A000012 (n=0), A001477 (n=1), A002378 (n=2), A055232 (terms of row n=3 divided by 2).
Columns: A000007 (k=0), A019590 (k=1), A040000 (k=2), A054886 (k=3).

Programs

  • Python
    def A350529_col(k,nmax):
        d = []
        c = [0]*(nmax+1)
        while 1:
            if not d or all(d[-1]):
                c[len(d)] += 1 + (bool(d) and 2*d[0][0] != k+1)
                if len(d) < nmax:
                    d.append([0])
                    for i in range(len(d)-1):
                        d[-1].append(d[-1][-1]-d[-2][i])
            while d and d[-1][0] == k:
                d.pop()
            if not d or len(d) == 1 and 2*d[0][0] >= k: return c
            for i in range(len(d)):
                d[-1][i] += 1
Showing 1-1 of 1 results.