cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350536 a(n) is the smallest proper multiple of 2n+1 which contains only odd digits, or -1 if no such multiple exists.

Original entry on oeis.org

3, 9, 15, 35, 99, 33, 39, 75, 51, 57, 315, 115, 75, 135, 319, 93, 99, 175, 111, 117, 533, 559, 135, 517, 539, 153, 159, 715, 171, 177, 793, 315, 195, 335, 759, 355, 511, 375, 539, 395, 1377, 913, 595, 957, 979, 1911, 1395, 1995, 3395, 9999, 1111, 515, 315, 535, 1199, 333
Offset: 0

Views

Author

Bernard Schott, Jan 04 2022

Keywords

Comments

Generalization of the problem 1/2 of International Mathematical Talent Search, round 2 (see link and 2nd example).
If the escape clause is used, it will be necessarily for terms coming from n = 12 + 25*k, k >= 0.

Examples

			a(10) = 315 = 21 * 15 is the smallest multiple of 21 which contains only odd digits.
a(4998) = 33339995 = 9997 * 3335 is the smallest multiple of 9997 which contains only odd digits, so this is the answer to the IMTS problem.
		

Crossrefs

Terms belong to A014261.

Programs

  • Mathematica
    a[n_] := Module[{m = 2*n + 1, k}, k = 3*m; While[!AllTrue[IntegerDigits[k], OddQ], k += 2*m]; k]; Array[a, 50, 0] (* Amiram Eldar, Jan 04 2022 *)
  • PARI
    isok(k) = my(d=digits(k)); #d == #select(x->((x%2)==1), d);
    a(n) = my(k=6*n+3); while (!isok(k), k+=4*n+2); k; \\ Michel Marcus, Jan 04 2022
    
  • Python
    from itertools import product, count
    def A350536(n):
        m = 2*n+1
        for l in count(len(str(m))):
            for s in product('13579',repeat=l):
                k = int(''.join(s))
                if k > m and k % m == 0:
                    return k # Chai Wah Wu, Jan 11 2022

Extensions

More terms from Michel Marcus, Jan 04 2022