A350542 Twin primes x, represented by their average, such that x is the first and x+30 the last of four successive twins.
12, 626598, 663570, 1322148, 2144478, 2668218, 6510192, 6937938, 10187910, 11495580, 11721768, 18873498, 18873510, 25658430, 39659532, 39851292, 46533468, 80572158, 84099318, 86944602, 91814712, 93956100, 123911532, 128469150, 129902022, 148979838
Offset: 1
Keywords
Examples
Quadruples of twins Example 8-tuple of primes (x,x+ 6,x+18,x+30) x=12 (11,13,17,19,29,31,41,43) (x,x+12,x+24,x+30) x=626598 (x-1,x+1,x+11,x+13,x+23,x+25,x+29,x+31) (x,x+12,x+18,x+30) x=663570 (x-1,x+1,x+11,x+13,x+17,x+19,x+29,x+31) (x,x+ 6,x+24,x+30), (x,x+6,x+12,x+30) and (x,x+18,x+24,x+30) do not occur for divisibility reasons.
Links
- Eric Weisstein's World of Mathematics, k-Tuple Conjecture.
Programs
-
Mathematica
Select[Prime@Range[4,200000], Count[Range[#,#+30],?(PrimeQ@#&&PrimeQ[#+2]&)]==4&]+1 (* _Giorgos Kalogeropoulos, Jan 07 2022 *)
-
Maxima
block(twin:[], n:0, p1:11, j2:1, nmax: 3, /*returns nmax terms*/ m:4, d:30, w: makelist(-d,i,1,m), while n
Comments