cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A038102 Numbers k such that k is a substring of its base-2 representation.

Original entry on oeis.org

0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1100, 1101, 10000, 10001, 10011, 10100, 10101, 10111, 11000, 11001, 11100, 11101, 100000, 100001, 101000, 101010, 101100, 101101, 101111, 110000, 110001, 110101, 111100, 111101, 1000000
Offset: 1

Views

Author

Patrick De Geest, Feb 15 1999

Keywords

Examples

			101000_10 = 1100010{101000}1000_2.
		

Crossrefs

Programs

  • Mathematica
    Select[FromDigits /@ IntegerDigits[Range[2^15]-1, 2], StringPosition[StringJoin @@ (ToString /@ IntegerDigits[#, 2]), ToString@#] != {} &] (* terms < 10^15, Giovanni Resta, Apr 30 2013 *)
    f[n_] := Block[{a = FromDigits@ IntegerDigits[n, 2]}, If[ StringPosition[ ToString@ FromDigits@ IntegerDigits[ a, 2], ToString@ a] != {}, a, 0]]; k = 0; lst = {}; While[k < 65, AppendTo[lst, f@k]; lst = Union@ lst; k++]; lst (* Robert G. Wilson v, Jun 29 2014 *)
  • PARI
    {for(vv=0, 200, bvv=binary(vv);
    mm=length(bvv); texp=0; btod=0;
    forstep(i=mm, 1, -1, btod=btod+bvv[i]*10^texp; texp++);
    bigb=binary(btod); lbb=length(bigb); swsq=1;
    for(k=0, lbb - mm , for(j=1, mm, if(bvv[j]!=bigb[j+k], swsq=0));
    if(swsq==1, print1(btod, ", "); break, swsq=1)))}
    \\\ Douglas Latimer, Apr 29 2013
    
  • Python
    from itertools import count, islice, product
    def ok(n): return int(max(str(n))) < 2 and str(n) in bin(n)
    def agen(): # generator of terms
        yield 0
        for d in count(1):
            for rest in product("01", repeat=d-1):
                k = int("1" + "".join(rest))
                if ok(k):
                    yield k
    print(list(islice(agen(), 35))) # Michael S. Branicky, Jan 04 2022

A350573 Base-10 version of A038103 interpreted as base 3.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 11, 12, 21, 22, 23, 24, 31, 41, 43, 62, 145, 146, 149, 152, 2626, 2627, 4370, 8463, 8466, 13562, 20841, 42320, 43171, 46609, 47749, 48150, 52723, 55179, 55180, 55181
Offset: 1

Views

Author

Hans Havermann, Jan 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    B3[n_] := FromDigits[IntegerDigits[n, 3]]
    SP[n_] := (b = B3[n]; StringPosition[ToString[B3[b]], ToString[b]])
    n=0; t={}; While[n<10^6, If[SP[n]!={}, AppendTo[t, n]]; n++]; t
  • Python
    from sympy.ntheory.digits import digits
    from itertools import count, islice, product
    def agen(): # generator of terms
        yield 0
        for d in count(1):
            for first in "12":
                for rest in product("012", repeat=d-1):
                    s = first + "".join(rest)
                    if s in "".join(str(d) for d in digits(int(s), 3)[1:]):
                        yield int(s, 3)
    print(list(islice(agen(), 36))) # Michael S. Branicky, Jan 06 2022
    
  • Python
    from itertools import count, islice
    from gmpy2 import digits
    def A350573_gen(): return (n for n in count(0) if (s:=digits(n,3)) in digits(int(s),3))
    A350573_list = list(islice(A350573_gen(),30)) # Chai Wah Wu, Jan 09 2022
Showing 1-2 of 2 results.