A350574 Primes p such that p, asc(p), and desc(p) are all distinct primes (where asc(p) and desc(p) are the digits of p in ascending and descending order, respectively) and p is the minimum of all permutations of its digits with this property.
131, 197, 373, 419, 571, 593, 617, 839, 919, 1297, 1327, 1429, 1879, 1949, 1993, 2129, 2213, 2591, 3539, 4337, 4637, 4639, 5519, 6619, 8389, 8933, 11491, 11519, 11527, 11597, 11897, 11969, 12757, 12829, 12979, 13649, 13879, 14537, 14737, 14741, 14891
Offset: 1
Examples
131 is prime, and so are asc(131) = 113 and desc(131) = 311. Further, these are all distinct primes. 419, asc(419) = 149, and desc(419) = 941 are all distinct primes, and 419 is the smallest permutation of the digits {1,4,9} with this property (149 is not included because asc(149) = 149, so these would not be distinct; 491 is not included because 419 < 491 with the same set of digits).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Maple
d:= n-> convert(n, base, 10): g:= (n, r)-> parse(cat(sort(d(n), r)[])): f:= n-> (s-> nops(s)=3 and andmap(isprime, s))({n, g(n, `<`), g(n, `>`)}): q:= n-> f(n) and n=min(select(f, map(x-> parse(cat(x[])), combinat[permute](d(n))))): select(q, [$1..15000])[]; # Alois P. Heinz, Jan 15 2022
-
Mathematica
Select[Prime@Range@2000,AllTrue[FromDigits/@{s=Sort[d=IntegerDigits@#],Reverse@s},PrimeQ]&&Min@Most@Rest@Sort@Select[FromDigits/@Permutations[d],PrimeQ]==#&] (* Giorgos Kalogeropoulos, Jan 16 2022 *)
-
Python
import numpy as np # preliminary functions we will use in building our list def is_prime(n): for d in range(2,int(np.sqrt(n))+1): if n % d == 0: return False return True def asc(n): # returns integer with digits of n in ascending order n_list = [int(digit) for digit in str(n)] # separate digits of n into a list n_list.sort() # rearrange numbers in ascending order asc_n = int(''.join([str(digit) for digit in n_list])) # concatenate the sorted digits return asc_n def desc(n): # returns integer with digits of n in descending order n_list = [int(digit) for digit in str(n)] n_list.sort(reverse=True) desc_n = int(''.join([str(digit) for digit in n_list])) return desc_n N = 5 # get list of integers n such that n, asc(n), and desc(n) are all distinct primes condition_1 = [n for n in range(2,10**N) if is_prime(n) and is_prime(asc(n)) and is_prime(desc(n)) and n not in (asc(n),desc(n))] # refine so that our list includes only the minimum permutation of a given set of digits satisfying condition 1 condition_2 = [] for num in condition_1: if asc(num) not in [asc(n) for n in condition_2]: condition_2.append(num) print(condition_2)
-
Python
from itertools import count, islice, combinations_with_replacement from sympy import isprime from sympy.utilities.iterables import multiset_permutations def A350574_gen(): # generator of terms for l in count(1): rlist = [] for a in combinations_with_replacement('123456789',l): s = ''.join(a) p, q = int(s), int(s[::-1]) if p != q and isprime(p) and isprime(q): for b in multiset_permutations(a): r = int(''.join(b)) if p < r < q and isprime(r): rlist.append(r) break yield from sorted(rlist) A350574_list = list(islice(A350574_gen(),50)) # Chai Wah Wu, Feb 13 2022
Comments