A350577 Prime numbers in A036991.
3, 5, 7, 11, 13, 19, 23, 29, 31, 43, 47, 53, 59, 61, 71, 79, 83, 103, 107, 109, 127, 151, 157, 167, 173, 179, 181, 191, 199, 211, 223, 239, 251, 271, 283, 307, 311, 317, 331, 347, 349, 359, 367, 373, 379, 383, 431, 439, 443, 461, 463, 467, 479, 487, 491, 499
Offset: 1
Links
- Gennady Eremin, Table of n, a(n) for n = 1..20000
- Gennady Eremin, Partitioning the set of natural numbers into Mersenne trees and into arithmetic progressions; Natural Matrix and Linnik's constant, arXiv:2405.16143 [math.CO], 2024. See pp. 10, 14.
Crossrefs
Programs
-
Maple
q:= proc(n) local l, t, i; l:= Bits[Split](n); t:=0; for i to nops(l) do t:= t-1+2*l[i]; if t<0 then return false fi od: true end: select(isprime and q, [$2..500])[]; # Alois P. Heinz, Jan 07 2022
-
Mathematica
q[n_] := PrimeQ[n] && AllTrue[Accumulate[(-1)^Reverse[IntegerDigits[n, 2]]], # <= 0 &]; Select[Range[500], q] (* Amiram Eldar, Jan 07 2022 *)
-
Python
from sympy import isprime def ok(n): if n == 0: return True count = {"0": 0, "1": 0} for bit in bin(n)[:1:-1]: count[bit] += 1 if count["0"] > count["1"]: return False return isprime(n) print([k for k in range(3, 500, 2) if ok(k)]) # Michael S. Branicky, Jan 07 2022
Comments