cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350584 Triangle read by rows, T(n, k) = [x^k] ((2*x^3 - 3*x^2 - x + 1)/(1 - x)^(n + 2)), for n >= 1 and 0 <= k < n.

Original entry on oeis.org

1, 1, 3, 1, 4, 7, 1, 5, 12, 19, 1, 6, 18, 37, 56, 1, 7, 25, 62, 118, 174, 1, 8, 33, 95, 213, 387, 561, 1, 9, 42, 137, 350, 737, 1298, 1859, 1, 10, 52, 189, 539, 1276, 2574, 4433, 6292, 1, 11, 63, 252, 791, 2067, 4641, 9074, 15366, 21658
Offset: 1

Views

Author

Peter Luschny, Mar 27 2022

Keywords

Examples

			Triangle starts:
[1] [1]
[2] [1,  3]
[3] [1,  4,  7]
[4] [1,  5, 12,  19]
[5] [1,  6, 18,  37,  56]
[6] [1,  7, 25,  62, 118,  174]
[7] [1,  8, 33,  95, 213,  387,  561]
[8] [1,  9, 42, 137, 350,  737, 1298, 1859]
[9] [1, 10, 52, 189, 539, 1276, 2574, 4433, 6292]
		

Crossrefs

A280891 (row sums), A135339 (alternating row sums), A005807 or A071716 (main diagonal).

Programs

  • Maple
    # Compare the analogue algorithm for the Bell triangle in A046937.
    A350584Triangle := proc(len) local A, P, T, n; A := [2]; P := [1]; T := [[1]];
    for n from 1 to len-1 do P := ListTools:-PartialSums([op(P), A[-1]]);
    A := P; T := [op(T), P] od; T end:
    A350584Triangle(10): ListTools:-Flatten(%);
    # Alternative:
    ogf := n -> (2*x^3 - 3*x^2 - x + 1)/(1 - x)^(n + 2):
    ser := n -> series(ogf(n), x, n):
    row := n -> seq(coeff(ser(n), x, k), k = 0..n-1):
    seq(row(n), n = 1..10);