A350584 Triangle read by rows, T(n, k) = [x^k] ((2*x^3 - 3*x^2 - x + 1)/(1 - x)^(n + 2)), for n >= 1 and 0 <= k < n.
1, 1, 3, 1, 4, 7, 1, 5, 12, 19, 1, 6, 18, 37, 56, 1, 7, 25, 62, 118, 174, 1, 8, 33, 95, 213, 387, 561, 1, 9, 42, 137, 350, 737, 1298, 1859, 1, 10, 52, 189, 539, 1276, 2574, 4433, 6292, 1, 11, 63, 252, 791, 2067, 4641, 9074, 15366, 21658
Offset: 1
Examples
Triangle starts: [1] [1] [2] [1, 3] [3] [1, 4, 7] [4] [1, 5, 12, 19] [5] [1, 6, 18, 37, 56] [6] [1, 7, 25, 62, 118, 174] [7] [1, 8, 33, 95, 213, 387, 561] [8] [1, 9, 42, 137, 350, 737, 1298, 1859] [9] [1, 10, 52, 189, 539, 1276, 2574, 4433, 6292]
Programs
-
Maple
# Compare the analogue algorithm for the Bell triangle in A046937. A350584Triangle := proc(len) local A, P, T, n; A := [2]; P := [1]; T := [[1]]; for n from 1 to len-1 do P := ListTools:-PartialSums([op(P), A[-1]]); A := P; T := [op(T), P] od; T end: A350584Triangle(10): ListTools:-Flatten(%); # Alternative: ogf := n -> (2*x^3 - 3*x^2 - x + 1)/(1 - x)^(n + 2): ser := n -> series(ogf(n), x, n): row := n -> seq(coeff(ser(n), x, k), k = 0..n-1): seq(row(n), n = 1..10);