A350589 Sum over all partitions of [n] of the number of blocks containing their own index.
0, 1, 3, 9, 30, 112, 464, 2109, 10411, 55351, 314772, 1903878, 12189432, 82274309, 583389847, 4332513061, 33607736990, 271657081128, 2283282938288, 19916981288017, 179994994948647, 1682624910161483, 16247280435775188, 161833756265886822, 1660836884761337248
Offset: 0
Keywords
Examples
a(3) = 9 = 1 + 1 + 2 + 2 + 3: 123, 12|3, 13|2, 1|23, 1|2|3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..575
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, 1, b(n-1, m+1)+m*b(n-1, m)) end: a:= n-> add(b(n-i, i), i=1..n): seq(a(n), n=0..25);
-
Mathematica
b[n_, m_] := b[n, m] = If[n == 0, 1, b[n - 1, m + 1] + m*b[n - 1, m]]; a[n_] := Sum[b[n - i, i], {i, 1, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 11 2022, after Alois P. Heinz *)
Comments