A350599 Number of ways to partition the set of vertices of a convex n-gon into non-intersecting directed polygons.
2, 2, 2, 14, 30, 50, 170, 462, 1014, 2810, 7906, 19910, 53278, 148514, 397530, 1073918, 2976390, 8172426, 22413266, 62219830, 172846382, 479683762, 1338281802, 3743620974, 10475828630, 29389158426, 82643684034, 232644515366, 655928162878, 1852640651330, 5239096953274
Offset: 3
Keywords
Examples
a(7) = 2 + 28 = 30 since the 7-gon can be given two directions and the 7-gon can also be partitioned into a triangle and a quadrilateral in 7 different ways giving another 7 * 4 = 28 possibilities.
Programs
-
Mathematica
a[n_] := Sum[2^k * Binomial[n + 1, k] * Binomial[n - 2*k - 1, k - 1]/(n + 1), {k, 1, Floor[n/3]}]; Array[a, 30, 3] (* Amiram Eldar, Jan 08 2022 *)
-
PARI
a(n) = sum(k=1, n\3, 2^k * binomial(n+1, k) * binomial(n-2*k-1, k-1)) / (n+1) \\ Andrew Howroyd, Jan 08 2022
Formula
a(n) = Sum_{k=1..floor(n/3)} 2^k * binomial(n+1, k) * binomial(n-2*k-1, k-1) / (n+1).
a(n) = Sum_{k=1..floor(n/3)} 2^k * A350248(n,k). - Andrew Howroyd, Jan 09 2022
The compositional inverse of x+Sum_{k=1..infinity} a_k x^{k+1} is x(1-x)/(1+x)(1-2x+x^2). Proved at MathOverflow 418996.
Comments