cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350634 Products of the parts s,t in each partition of k (= 2,3,...) into two parts, ordered by increasing k and then by increasing values of s*t (see example).

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 5, 8, 9, 6, 10, 12, 7, 12, 15, 16, 8, 14, 18, 20, 9, 16, 21, 24, 25, 10, 18, 24, 28, 30, 11, 20, 27, 32, 35, 36, 12, 22, 30, 36, 40, 42, 13, 24, 33, 40, 45, 48, 49, 14, 26, 36, 44, 50, 54, 56, 15, 28, 39, 48, 55, 60, 63, 64, 16, 30, 42, 52, 60, 66, 70, 72
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 09 2022

Keywords

Comments

If b > 0 and c > 0 are the integer coefficients of a monic quadratic x^2 + b*x + c, it has integer roots if its discriminant d^2 = b^2 - 4c is a perfect square. This sequence is the values of c for increasing b sorted by b then c. The first pair of (b, c) = (2, 1) and has d = 0. The n-th pair of (b, c) = (A027434(n),a(n)) and has d = A082375(n-1). - Frank M Jackson, Jan 22 2024

Examples

			---------------------------------------------------------------------------
The products of the parts start: 1*1, 1*2, 1*3, 2*2, 1*4, 2*3, etc., which are precisely the values of a(n): 1, 2, 3, 4, 4, 6, ...
                                                                     [1,9]
                                                     [1,7]   [1,8]   [2,8]
                                     [1,5]   [1,6]   [2,6]   [2,7]   [3,7]
                     [1,3]   [1,4]   [2,4]   [2,5]   [3,5]   [3,6]   [4,6]
     [1,1]   [1,2]   [2,2]   [2,3]   [3,3]   [3,4]   [4,4]   [4,5]   [5,5]
  k    2       3       4       5       6       7       8       9      10
---------------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    Times@@@Flatten[Table[IntegerPartitions[k, {2}], {k, 2, 100}], 1] (* Frank M Jackson, Jan 22 2024 *)
    lst={}; Do[If[IntegerQ[d=Sqrt[b^2-4c]], AppendTo[lst, c]], {b, 1, 100}, {c, 1, b^2/4}]; lst (* Frank M Jackson, Jan 22 2024 *)

Formula

a(n) = A122197(n) * A199474(n).
a(n) = A339399(2n-1) * A339399(2n).
a(n) = ((A027434(n))^2 - (A082375(n))^2)/4. - Frank M Jackson, Jan 22 2024