cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350638 Numbers of the form p^2*q, with odd primes p > q, such that q divides p-1.

Original entry on oeis.org

147, 507, 605, 1083, 2883, 4107, 4805, 5547, 5819, 5887, 8405, 11163, 12943, 13467, 15987, 18605, 18723, 25205, 28227, 31827, 35287, 35643, 36517, 48387, 49379, 50807, 51005, 57963, 68403, 73947, 79707, 81133, 85805, 87131, 89383, 98283, 100949, 111747, 112903
Offset: 1

Views

Author

Bernard Schott, Jan 10 2022

Keywords

Comments

For these terms m there are precisely (q+9)/2 groups of order m.
Only two of these groups are abelian: C_{p^2*q} and (C_p X C_p) X C_q. The (q+5)/2 groups that are nonabelian are C_{p^2} : C_q and the (q+3)/2 semidirect products of the form (C_p X C_p) : C_q that are not isomorphic, where C means cyclic groups of the stated order, the symbols X and : mean direct and semidirect products respectively.

Examples

			147 = 7^2 * 3, 3 and 7 are odd primes, 3 divides 7-1 = 6, hence 147 is a term.
		

References

  • Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004.

Crossrefs

Other subsequences of A054753 linked with order of groups: A079704, A143928, A349495, A350115, A350245, A350332, A350421, A350422.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; e == {1, 2} && Divisible[p[[2]] - 1, p[[1]]]]; Select[Range[1, 120000, 2], q] (* Amiram Eldar, Jan 11 2022 *)
  • PARI
    isok(m) = if (m%2, my(f=factor(m)); if (f[, 2] == [1, 2]~, my(p=f[1, 1], q=f[2, 1]); ((q-1) % p) == 0)); \\ Michel Marcus, Jan 11 2022
  • Python
    from sympy import integer_nthroot, primerange
    def aupto(limit):
        aset, maxp = set(), integer_nthroot(limit**2, 3)[0]
        for p in primerange(5, maxp+1):
            pp = p*p
            for q in primerange(3, min(p, limit//pp+1)):
                if (p-1)%q == 0:
                    aset.add(pp*q)
        return sorted(aset)
    print(aupto(113000)) # Michael S. Branicky, Jan 10 2022
    

Extensions

More terms from Michael S. Branicky, Jan 10 2022