A350638 Numbers of the form p^2*q, with odd primes p > q, such that q divides p-1.
147, 507, 605, 1083, 2883, 4107, 4805, 5547, 5819, 5887, 8405, 11163, 12943, 13467, 15987, 18605, 18723, 25205, 28227, 31827, 35287, 35643, 36517, 48387, 49379, 50807, 51005, 57963, 68403, 73947, 79707, 81133, 85805, 87131, 89383, 98283, 100949, 111747, 112903
Offset: 1
Keywords
Examples
147 = 7^2 * 3, 3 and 7 are odd primes, 3 divides 7-1 = 6, hence 147 is a term.
References
- Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004.
Links
- N. S. Wedd, Groups of orders 147.
Crossrefs
Programs
-
Mathematica
q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; e == {1, 2} && Divisible[p[[2]] - 1, p[[1]]]]; Select[Range[1, 120000, 2], q] (* Amiram Eldar, Jan 11 2022 *)
-
PARI
isok(m) = if (m%2, my(f=factor(m)); if (f[, 2] == [1, 2]~, my(p=f[1, 1], q=f[2, 1]); ((q-1) % p) == 0)); \\ Michel Marcus, Jan 11 2022
-
Python
from sympy import integer_nthroot, primerange def aupto(limit): aset, maxp = set(), integer_nthroot(limit**2, 3)[0] for p in primerange(5, maxp+1): pp = p*p for q in primerange(3, min(p, limit//pp+1)): if (p-1)%q == 0: aset.add(pp*q) return sorted(aset) print(aupto(113000)) # Michael S. Branicky, Jan 10 2022
Extensions
More terms from Michael S. Branicky, Jan 10 2022
Comments