cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A350648 Sum over all partitions of [n] of the number of blocks containing their own index when blocks are ordered with decreasing largest elements.

Original entry on oeis.org

0, 1, 1, 5, 11, 48, 173, 795, 3719, 19343, 106563, 628508, 3923602, 25875858, 179468739, 1305268102, 9925892324, 78728325373, 649856661196, 5571421770478, 49521735963376, 455616186779543, 4332419124871058, 42520560822961111, 430191406640367880
Offset: 0

Views

Author

Alois P. Heinz, Jan 09 2022

Keywords

Examples

			a(3) = 5 = 3*1 + 2*2: 321, 3|21, 3|2|1; 31|2.
a(4) = 11 = 7*1 + 2*2: 4321, 43|21, 43|2|1, 421|3, 4|321, 4|32|1, 41|3|2; 431|2, 41|32.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, [1, 0], add((p->p+
          [0, `if`(j=n, p[1], 0)])(b(n-1, max(j, m))), j=1..m+1))
        end:
    a:= n-> b(n, 0)[2]:
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, p + {0, If[j == n, p[[1]], 0]}][b[n - 1, Max[j, m]]], {j, 1, m + 1}]];
    a[n_] := b[n, 0][[2]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 11 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..ceiling(n/2)} k * A350647(n,k).

A350684 Number T(n,k) of partitions of [n] such that the sum of elements i contained in block i equals k when blocks are ordered with decreasing largest elements; triangle T(n,k), n>=0, 0<=k<=max(0,A008805(n-1)), read by rows.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 2, 1, 6, 3, 4, 2, 16, 7, 8, 14, 3, 3, 1, 73, 25, 26, 51, 12, 12, 4, 298, 91, 92, 164, 116, 56, 30, 21, 4, 4, 1, 1453, 390, 391, 601, 676, 256, 163, 147, 28, 28, 7, 7366, 1797, 1798, 2484, 3228, 1927, 897, 876, 307, 307, 87, 31, 31, 5, 5, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 11 2022

Keywords

Examples

			T(4,0) = 6: 432|1, 42|31, 42|3|1, 4|31|2, 4|3|21, 4|3|2|1.
T(4,1) = 3: 432(1), 42(1)|3, 4(1)|3|2.
T(4,2) = 4: 43|(2)1, 43|(2)|1, 4|3(2)1, 4|3(2)|1,
T(4,3) = 2: 43(1)|(2), 4(1)|3(2).
Triangle T(n,k) begins:
     1;
     0,   1;
     1,   1;
     1,   1,   2,   1;
     6,   3,   4,   2;
    16,   7,   8,  14,   3,   3,   1;
    73,  25,  26,  51,  12,  12,   4;
   298,  91,  92, 164, 116,  56,  30,  21,  4,  4, 1;
  1453, 390, 391, 601, 676, 256, 163, 147, 28, 28, 7;
  ...
		

Crossrefs

Columns k=0-1 give: A350649, A350650.
Row sums give A000110.

Programs

  • Maple
    b:= proc(n, m) option remember; expand(`if`(n=0, 1, add(
         `if`(n=j, x^j, 1)*b(n-1, max(m, j)), j=1..m+1)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..10);
  • Mathematica
    b[n_, m_] := b[n, m] = Expand[If[n == 0, 1, Sum[
         If[n == j, x^j, 1]*b[n - 1, Max[m, j]], {j, 1, m + 1}]]];
    T[n_] := CoefficientList[b[n, 0], x];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)

Formula

Sum_{k=1..max(0,A008805(n-1))} k * T(n,k) = A350683(n).
T(2n,A000217(n)) = A152947(n+1).
T(2n-1,A000217(n)) = 1 for n>=1.
T(n,2) - T(n,1) = 1 for n>=3.

A350649 Number of partitions of [n] avoiding blocks containing their own index when blocks are ordered with decreasing largest elements.

Original entry on oeis.org

1, 0, 1, 1, 6, 16, 73, 298, 1453, 7366, 40689, 238258, 1483306, 9746839, 67415262, 489048716, 3710659737, 29372630485, 242021348787, 2071598497189, 18386889241210, 168944811545046, 1604584556714162, 15731291424746912, 159001720653174800, 1654891767547439393
Offset: 0

Views

Author

Alois P. Heinz, Jan 09 2022

Keywords

Examples

			a(4) = 6: 432|1, 42|31, 42|3|1, 4|31|2, 4|3|21, 4|3|2|1.
		

Crossrefs

Column k=0 of A350647, A350684.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1, add(
          `if`(j=n, 0, b(n-1, max(m, j))), j=1..m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, m_] := b[n, m] = If[n == 0, 1, Sum[
         If[j == n, 0, b[n-1, Max[m, j]]], {j, 1, m+1}]];
    a[n_] := b[n, 0];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 16 2022, after Alois P. Heinz *)

A350650 Number of partitions of [n] having exactly one block containing its own index when blocks are ordered with decreasing largest elements.

Original entry on oeis.org

0, 1, 1, 3, 7, 25, 91, 390, 1797, 9069, 49106, 284537, 1751554, 11406588, 78254594, 563642925, 4249337018, 33443545866, 274130245342, 2335311549498, 20637538548167, 188867393030394, 1787189672368355, 17461684290203403, 175930808241047092, 1825666076751872506
Offset: 0

Views

Author

Alois P. Heinz, Jan 09 2022

Keywords

Examples

			a(4) = 7: 4321, 43|21, 43|2|1, 421|3, 4|321, 4|32|1, 41|3|2.
		

Crossrefs

Column k=1 of A350647, A350684.

Programs

  • Maple
    b:= proc(n, m) option remember; series(`if`(n=0, 1, add(
          `if`(j=n, x, 1)*b(n-1, max(m, j)), j=1..m+1)), x, 2)
        end:
    a:= n-> coeff(b(n, 0), x, 1):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, m_] := b[n, m] = Series[If[n == 0, 1, Sum[
        If[j == n, x, 1]*b[n-1, Max[m, j]], {j, 1, m+1}]], {x, 0, 2}];
    a[n_] := Coefficient[b[n, 0], x, 1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 16 2022, after Alois P. Heinz *)
Showing 1-4 of 4 results.