A350648 Sum over all partitions of [n] of the number of blocks containing their own index when blocks are ordered with decreasing largest elements.
0, 1, 1, 5, 11, 48, 173, 795, 3719, 19343, 106563, 628508, 3923602, 25875858, 179468739, 1305268102, 9925892324, 78728325373, 649856661196, 5571421770478, 49521735963376, 455616186779543, 4332419124871058, 42520560822961111, 430191406640367880
Offset: 0
Keywords
Examples
a(3) = 5 = 3*1 + 2*2: 321, 3|21, 3|2|1; 31|2. a(4) = 11 = 7*1 + 2*2: 4321, 43|21, 43|2|1, 421|3, 4|321, 4|32|1, 41|3|2; 431|2, 41|32.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..576
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, [1, 0], add((p->p+ [0, `if`(j=n, p[1], 0)])(b(n-1, max(j, m))), j=1..m+1)) end: a:= n-> b(n, 0)[2]: seq(a(n), n=0..30);
-
Mathematica
b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, p + {0, If[j == n, p[[1]], 0]}][b[n - 1, Max[j, m]]], {j, 1, m + 1}]]; a[n_] := b[n, 0][[2]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 11 2022, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=1..ceiling(n/2)} k * A350647(n,k).