cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350648 Sum over all partitions of [n] of the number of blocks containing their own index when blocks are ordered with decreasing largest elements.

Original entry on oeis.org

0, 1, 1, 5, 11, 48, 173, 795, 3719, 19343, 106563, 628508, 3923602, 25875858, 179468739, 1305268102, 9925892324, 78728325373, 649856661196, 5571421770478, 49521735963376, 455616186779543, 4332419124871058, 42520560822961111, 430191406640367880
Offset: 0

Views

Author

Alois P. Heinz, Jan 09 2022

Keywords

Examples

			a(3) = 5 = 3*1 + 2*2: 321, 3|21, 3|2|1; 31|2.
a(4) = 11 = 7*1 + 2*2: 4321, 43|21, 43|2|1, 421|3, 4|321, 4|32|1, 41|3|2; 431|2, 41|32.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, [1, 0], add((p->p+
          [0, `if`(j=n, p[1], 0)])(b(n-1, max(j, m))), j=1..m+1))
        end:
    a:= n-> b(n, 0)[2]:
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, p + {0, If[j == n, p[[1]], 0]}][b[n - 1, Max[j, m]]], {j, 1, m + 1}]];
    a[n_] := b[n, 0][[2]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 11 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..ceiling(n/2)} k * A350647(n,k).