A350649 Number of partitions of [n] avoiding blocks containing their own index when blocks are ordered with decreasing largest elements.
1, 0, 1, 1, 6, 16, 73, 298, 1453, 7366, 40689, 238258, 1483306, 9746839, 67415262, 489048716, 3710659737, 29372630485, 242021348787, 2071598497189, 18386889241210, 168944811545046, 1604584556714162, 15731291424746912, 159001720653174800, 1654891767547439393
Offset: 0
Keywords
Examples
a(4) = 6: 432|1, 42|31, 42|3|1, 4|31|2, 4|3|21, 4|3|2|1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..576
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, 1, add( `if`(j=n, 0, b(n-1, max(m, j))), j=1..m+1)) end: a:= n-> b(n, 0): seq(a(n), n=0..25);
-
Mathematica
b[n_, m_] := b[n, m] = If[n == 0, 1, Sum[ If[j == n, 0, b[n-1, Max[m, j]]], {j, 1, m+1}]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 16 2022, after Alois P. Heinz *)