A350650 Number of partitions of [n] having exactly one block containing its own index when blocks are ordered with decreasing largest elements.
0, 1, 1, 3, 7, 25, 91, 390, 1797, 9069, 49106, 284537, 1751554, 11406588, 78254594, 563642925, 4249337018, 33443545866, 274130245342, 2335311549498, 20637538548167, 188867393030394, 1787189672368355, 17461684290203403, 175930808241047092, 1825666076751872506
Offset: 0
Keywords
Examples
a(4) = 7: 4321, 43|21, 43|2|1, 421|3, 4|321, 4|32|1, 41|3|2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..576
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, m) option remember; series(`if`(n=0, 1, add( `if`(j=n, x, 1)*b(n-1, max(m, j)), j=1..m+1)), x, 2) end: a:= n-> coeff(b(n, 0), x, 1): seq(a(n), n=0..25);
-
Mathematica
b[n_, m_] := b[n, m] = Series[If[n == 0, 1, Sum[ If[j == n, x, 1]*b[n-1, Max[m, j]], {j, 1, m+1}]], {x, 0, 2}]; a[n_] := Coefficient[b[n, 0], x, 1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 16 2022, after Alois P. Heinz *)