A350684 Number T(n,k) of partitions of [n] such that the sum of elements i contained in block i equals k when blocks are ordered with decreasing largest elements; triangle T(n,k), n>=0, 0<=k<=max(0,A008805(n-1)), read by rows.
1, 0, 1, 1, 1, 1, 1, 2, 1, 6, 3, 4, 2, 16, 7, 8, 14, 3, 3, 1, 73, 25, 26, 51, 12, 12, 4, 298, 91, 92, 164, 116, 56, 30, 21, 4, 4, 1, 1453, 390, 391, 601, 676, 256, 163, 147, 28, 28, 7, 7366, 1797, 1798, 2484, 3228, 1927, 897, 876, 307, 307, 87, 31, 31, 5, 5, 1
Offset: 0
Examples
T(4,0) = 6: 432|1, 42|31, 42|3|1, 4|31|2, 4|3|21, 4|3|2|1. T(4,1) = 3: 432(1), 42(1)|3, 4(1)|3|2. T(4,2) = 4: 43|(2)1, 43|(2)|1, 4|3(2)1, 4|3(2)|1, T(4,3) = 2: 43(1)|(2), 4(1)|3(2). Triangle T(n,k) begins: 1; 0, 1; 1, 1; 1, 1, 2, 1; 6, 3, 4, 2; 16, 7, 8, 14, 3, 3, 1; 73, 25, 26, 51, 12, 12, 4; 298, 91, 92, 164, 116, 56, 30, 21, 4, 4, 1; 1453, 390, 391, 601, 676, 256, 163, 147, 28, 28, 7; ...
Links
- Alois P. Heinz, Rows n = 0..100, flattened
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Maple
b:= proc(n, m) option remember; expand(`if`(n=0, 1, add( `if`(n=j, x^j, 1)*b(n-1, max(m, j)), j=1..m+1))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)): seq(T(n), n=0..10);
-
Mathematica
b[n_, m_] := b[n, m] = Expand[If[n == 0, 1, Sum[ If[n == j, x^j, 1]*b[n - 1, Max[m, j]], {j, 1, m + 1}]]]; T[n_] := CoefficientList[b[n, 0], x]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)