cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350684 Number T(n,k) of partitions of [n] such that the sum of elements i contained in block i equals k when blocks are ordered with decreasing largest elements; triangle T(n,k), n>=0, 0<=k<=max(0,A008805(n-1)), read by rows.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 2, 1, 6, 3, 4, 2, 16, 7, 8, 14, 3, 3, 1, 73, 25, 26, 51, 12, 12, 4, 298, 91, 92, 164, 116, 56, 30, 21, 4, 4, 1, 1453, 390, 391, 601, 676, 256, 163, 147, 28, 28, 7, 7366, 1797, 1798, 2484, 3228, 1927, 897, 876, 307, 307, 87, 31, 31, 5, 5, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 11 2022

Keywords

Examples

			T(4,0) = 6: 432|1, 42|31, 42|3|1, 4|31|2, 4|3|21, 4|3|2|1.
T(4,1) = 3: 432(1), 42(1)|3, 4(1)|3|2.
T(4,2) = 4: 43|(2)1, 43|(2)|1, 4|3(2)1, 4|3(2)|1,
T(4,3) = 2: 43(1)|(2), 4(1)|3(2).
Triangle T(n,k) begins:
     1;
     0,   1;
     1,   1;
     1,   1,   2,   1;
     6,   3,   4,   2;
    16,   7,   8,  14,   3,   3,   1;
    73,  25,  26,  51,  12,  12,   4;
   298,  91,  92, 164, 116,  56,  30,  21,  4,  4, 1;
  1453, 390, 391, 601, 676, 256, 163, 147, 28, 28, 7;
  ...
		

Crossrefs

Columns k=0-1 give: A350649, A350650.
Row sums give A000110.

Programs

  • Maple
    b:= proc(n, m) option remember; expand(`if`(n=0, 1, add(
         `if`(n=j, x^j, 1)*b(n-1, max(m, j)), j=1..m+1)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..10);
  • Mathematica
    b[n_, m_] := b[n, m] = Expand[If[n == 0, 1, Sum[
         If[n == j, x^j, 1]*b[n - 1, Max[m, j]], {j, 1, m + 1}]]];
    T[n_] := CoefficientList[b[n, 0], x];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)

Formula

Sum_{k=1..max(0,A008805(n-1))} k * T(n,k) = A350683(n).
T(2n,A000217(n)) = A152947(n+1).
T(2n-1,A000217(n)) = 1 for n>=1.
T(n,2) - T(n,1) = 1 for n>=3.