A350703 a(n) is the least integer k such that (2*n*k+1) | (2^k-1).
3, 18, 5, 9, 15, 50, 40, 16, 7, 156, 60, 25, 180, 102, 113, 81, 10, 50, 29, 159, 51, 56, 24, 36, 47, 90, 337, 72, 55, 106, 33, 102, 780, 28, 117, 25, 155, 540, 60, 104, 223, 1012, 168, 180, 91, 540, 3132, 47, 510, 412, 154, 45, 80, 432, 201, 36, 90, 144, 97, 53, 279, 880
Offset: 1
Keywords
Examples
a(5) = 15: 2^15 - 1 = 32767; 2*5*15 + 1 = 151; 32767 mod 151 = 0, and there are no numbers < 15 which satisfy the requirement for n = 5.
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := Module[{k = 1}, While[PowerMod[2, k, 2*n*k + 1] != 1, k++]; k]; Array[a, 62] (* Amiram Eldar, Feb 03 2022 *)
-
PARI
a(n) = my(k=1); while (Mod(2, 2*n*k+1)^k != 1, k++); k; \\ Michel Marcus, Feb 03 2022
-
Python
def A350703(k,expo): while pow(2, expo, 2*k*expo+1) != 1: expo += 1 return expo print([A350703(k,1) for k in range(1, 63)])
Comments