A350712 a(n) is the smallest hexagonal number for which the symmetric representation of sigma(n) has width 2*n, n >= 0, at the diagonal.
0, 6, 120, 2016, 7140, 61776, 103740, 738720, 437580, 1185030, 4680270, 4426800, 2031120, 6193440, 4915680, 30728880, 2162160, 48565440, 134734320, 286071240, 163723560, 376902240, 536592420, 137373600, 76576500, 391986000, 214980480, 103672800, 1018606680, 5401294080
Offset: 0
Keywords
Examples
a(1) = 6, and a(2) = 120 since all hexagonal numbers k, 6 <= k < 120, have width 2 at the diagonal.
Programs
-
Mathematica
(* for function a2[ ] see A237048 and A249223 *) (* parameter bw is an upper bound estimate for how many values will be returned *) a350712[n_, bw_] := Module[{widthL=Table[0, bw], wL, cL, i, w}, wL=Map[#(2#-1)&, Range[n]]; cL=Map[Last[a2[#]]&, wL]; For[i=1, i<=n, i++, w=cL[[i]]; If[EvenQ[w]&&widthL[[w/2]]==0, widthL[[w/2]]=wL[[i]]]]; Join[{0}, widthL]] Take[a350712[55000, 50], 37]
Comments