cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350714 Least positive integer m such that m^12*n = x^4 + y^3 + z^2 for some nonnegative integers x,y,z.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 02 2022

Keywords

Comments

4-3-2 Conjecture: a(n) exists for any nonnegative integer n. Equivalently, each nonnegative rational number can be written x^4 + y^3 + z^2 with x,y,z nonnegative rational numbers.
Note that m/n = (m*n^11)/n^12 for any positive integers m and n.
a(n) <= 4 for n <= 40000 with the only exception a(23710) = 5.
a(n) <= 4 for n = 77000..100000, and a(n) = 4 for n = 78367, 79479, 83494, 84694, 85979, 86822, 87395, 87814, 90047, 90278, 92891, 93715.
Qing-Hu Hou verified a(n) <= 4 for 40000 < n < 77000. - Zhi-Wei Sun Feb 04 2022
a(n) <= 5 for 10^5 < n <= 2*10^5, and a(n)=5 for n=107206, 117615, and 148079. - Qing-Hu Hou, Feb 05 2022

Examples

			a(6) = 1 with 1^12*6 = 1^4 + 1^3 + 2^2.
a(7) = 2 with 2^12*7 = 2^4 + 15^3 + 159^2.
a(75) = 4 with 4^12*75 = 122^4 + 1007^3 + 3951^2.
a(1140) = 3 with 3^12*1140 = 0^4 + 531^3 + 21357^2.
a(23710) = 5 with 5^12*23710 = 217^4 + 17897^3 + 232166^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[m=1;Label[bb];k=m^12;Do[If[SQ[k*n-x^4-y^3],tab=Append[tab,m];Goto[aa]],{x,0,(k*n)^(1/4)},{y,0,(k*n-x^4)^(1/3)}];m=m+1;Goto[bb];Label[aa],{n,0,100}];Print[tab]