A350714 Least positive integer m such that m^12*n = x^4 + y^3 + z^2 for some nonnegative integers x,y,z.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1
Offset: 0
Keywords
Examples
a(6) = 1 with 1^12*6 = 1^4 + 1^3 + 2^2. a(7) = 2 with 2^12*7 = 2^4 + 15^3 + 159^2. a(75) = 4 with 4^12*75 = 122^4 + 1007^3 + 3951^2. a(1140) = 3 with 3^12*1140 = 0^4 + 531^3 + 21357^2. a(23710) = 5 with 5^12*23710 = 217^4 + 17897^3 + 232166^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34 (2017), no.2, 97-120.
- Zhi-Wei Sun, Sums of four rational squares with certain restrictions, arXiv:2010.05775 [math.NT], 2020-2022.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={};Do[m=1;Label[bb];k=m^12;Do[If[SQ[k*n-x^4-y^3],tab=Append[tab,m];Goto[aa]],{x,0,(k*n)^(1/4)},{y,0,(k*n-x^4)^(1/3)}];m=m+1;Goto[bb];Label[aa],{n,0,100}];Print[tab]
Comments