A350746 Triangle read by rows: T(n,k) is the number of labeled quasi-loop-threshold graphs on vertex set [n] with k components, for n >= 1 and 1 <= k <= n.
2, 3, 4, 16, 18, 8, 133, 155, 72, 16, 1521, 1810, 910, 240, 32, 22184, 26797, 14145, 4180, 720, 64, 393681, 480879, 262514, 83230, 16520, 2016, 128, 8233803, 10144283, 5675866, 1888873, 409360, 58912, 5376, 256
Offset: 1
Examples
Triangle begins: 2; 3, 4; 16, 18, 8; 133, 155, 72, 16; 1521, 1810, 910, 240, 32; 22184, 26797, 14145, 4180, 720, 64; 393681, 480879, 262514, 83230, 16520, 2016, 128; 8233803, 10144283, 5675866, 1888873, 409360, 58912, 5376, 256; ...
Links
- D. Galvin, G. Wesley and B. Zacovic, Enumerating threshold graphs and some related graph classes, arXiv:2110.08953 [math.CO], 2021.
Crossrefs
Programs
-
Mathematica
qltconn[0] = 0; qltconn[1] = 2; qltconn[n_] := qltconn[n] = Sum[StirlingS2[n, k]*(k^(k - 1)), {k, 1, n}] (*qltconn is the number of connected quasi loop threshold graphs on n vertices*); T[n_, l_] := T[n, l] := (Factorial[n]/Factorial[l])*Coefficient[(Sum[(qltconn[k]*(x^k))/Factorial[k], {k, 1, n}])^l, x, n]; Table[T[n, l], {n, 1, 12}, {l, 1, n}]
Formula
See Section 1.4 of Galvin, Wesley and Zacovic link for two methods to compute T(n,k).
Comments