A350749 Triangle read by rows: T(n,k) is the number of oriented graphs on n labeled nodes with k arcs, n >= 0, k = 0..n*(n-1)/2.
1, 1, 1, 2, 1, 6, 12, 8, 1, 12, 60, 160, 240, 192, 64, 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024, 1, 30, 420, 3640, 21840, 96096, 320320, 823680, 1647360, 2562560, 3075072, 2795520, 1863680, 860160, 245760, 32768
Offset: 0
Examples
Triangle begins: [0] 1; [1] 1; [2] 1, 2; [3] 1, 6, 12, 8; [4] 1, 12, 60, 160, 240, 192, 64; [5] 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1350 (rows 0..20)
Crossrefs
Programs
-
PARI
T(n,k) = 2^k * binomial(n*(n-1)/2, k)
-
PARI
row(n) = {Vecrev((1+2*y)^(n*(n-1)/2))} { for(n=0, 6, print(row(n))) }
Formula
T(n,k) = 2^k * binomial(n*(n-1)/2, k) = A013609(n*(n-1)/2, k).
T(n,k) = [y^k] (1+2*y)^(n*(n-1)/2).