cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350763 Decimal expansion of gamma + log(2), where gamma is Euler's constant (A001620).

Original entry on oeis.org

1, 2, 7, 0, 3, 6, 2, 8, 4, 5, 4, 6, 1, 4, 7, 8, 1, 7, 0, 0, 2, 3, 7, 4, 4, 2, 1, 1, 5, 4, 0, 5, 7, 8, 9, 9, 9, 1, 1, 7, 6, 5, 9, 4, 7, 0, 3, 0, 0, 1, 7, 8, 8, 5, 2, 9, 2, 6, 4, 4, 7, 2, 4, 4, 3, 7, 8, 2, 6, 1, 3, 4, 8, 7, 4, 7, 3, 5, 9, 3, 8, 6, 5, 4, 2, 8, 1, 0, 3, 9, 0, 2, 8, 8, 1, 6, 5, 4, 3, 7, 0, 5, 6, 6, 3
Offset: 1

Views

Author

Amiram Eldar, Jan 14 2022

Keywords

Examples

			1.2703628454614781700237442115405789991176594703...
		

References

  • J. C. Kluyver, De constante van Euler en de natuurlijke getallen, Amst. Ak. Versl., Vol. 33 (1924), pp. 149-151.

Crossrefs

Programs

  • Mathematica
    RealDigits[EulerGamma + Log[2], 10, 100][[1]]

Formula

Equals A001620 + A002162.
Equals 1 + Sum_{k>=2} ((-1)^k * (zeta(k)-1)/k).
Equals 3/2 - Sum_{k>=2} ((-1)^k * (k-1) * (zeta(k)-1)/k) (Flajolet and Vardi, 1996).
Equals 5/4 - (1/2) * Sum_{k>=3} ((-1)^k * (k-1) * (zeta(k)-1)/k) (Gourdon and Sebah, 2008).
Equals 1 + Sum_{k>=2} (1/k - log(1+1/k)).
Equals 1 + Sum_{k>=0} abs(A002206(k))/((k+1)*(k+2)*A002207(k)) (Kluyver, 1924).
Equal Integral_{x>=0} (1/(1+x^2/4) - cos(x))/x dx = Integral_{x>=0} (1/(1+x^2) - cos(2*x))/x dx.
Equals Integral_{x=1..2} H(x) dx, where H(x) is the harmonic number for real variable x.
Equals 2*A228725. - Hugo Pfoertner, Jul 03 2024