A350767 a(1)=1. Thereafter, a(n+1) is the least unused number k such that either d(j(n)) properly divides d(k) or d(k) properly divides d(j(n)), where j(n) = a(n)+1 and d is the divisor counting function A000005.
1, 6, 8, 12, 10, 14, 2, 15, 48, 18, 20, 3, 28, 21, 5, 7, 11, 4, 22, 24, 32, 13, 17, 9, 19, 23, 26, 29, 27, 25, 30, 33, 31, 37, 40, 34, 41, 35, 49, 43, 47, 16, 38, 42, 39, 46, 44, 53, 51, 59, 45, 54, 56, 60, 50, 61, 66, 52, 55, 57, 67, 71, 58, 62, 72, 63, 192, 65
Offset: 1
Keywords
Examples
a(1)=1, so j(1)=2, d(j(1))=2, a prime, so we need the smallest unused k such that d(k) is properly divisible by 2, hence a(2)=6. a(2)=6, j(2)=4, d(j(2))=3, a prime so we need the smallest unused k such that d(k) is properly divisible by 3, hence a(3)=8.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10001
- Michael De Vlieger, Scatterplot of a(n), n = 1..256, color coded to show primes in red, evens in blue, 2 in magenta, odd composites in black. A gold highlight indicates terms such that (a(n)+1) | a(n+1). Outlying points are annotated.
- Michael De Vlieger, Log-log scatterplot of a(n), n = 1..2^16. Terms in A3680(p) such that p is prime appear annotated in red, and those in A061286 appear in blue.
Crossrefs
Programs
-
Mathematica
Block[{c, d, j, k, u, nn}, nn = 120; j = u = 2; c[] = 0; c[1] = 1; Do[d[i] = DivisorSigma[0, i], {i, 2^(Ceiling@ Log2[nn] + 3)}]; {1}~Join~Reap[Do[k = u; While[Nand[Or[Divisible[d[j], d[k]], Divisible[d[k], d[j]]], d[j] != d[k], c[k] == 0], k++]; Sow[k]; c[k] = i; j = k + 1; If[k == u, While[c[u] != 0, u++]], {i, nn}] ][[-1, -1]] ] (* _Michael De Vlieger, Jan 14 2022 *)
-
PARI
isok(k, last, set) = if (!setsearch(set, k), my(ndk=numdiv(k), ndl=numdiv(last+1)); (ndl != ndk) && ((!(ndk % ndl)) || (!(ndl % ndk)))); lista(nn) = {my(last = 1, list = List(last), set = Set(list)); for (n=2, nn, my(k=1); while (!isok(k, last, set), k++); listput(list, k); set = Set(list); last = k;); Vec(list);} \\ Michel Marcus, Jan 15 2022
Extensions
More terms from Michael De Vlieger, Jan 14 2022
Comments