A350813 a(n) is the least positive number k such that the product of the first n primes that are congruent to 1 (mod 4) is equal to y^2 - k^2 for some integer y.
2, 4, 24, 38, 16, 588, 5782, 5528, 80872, 319296, 3217476, 32301914, 20085008, 166518276, 2049477188, 17443412442, 27905362944, 233647747282, 886295348972, 134684992249108, 98002282636962, 392994156083892, 5283713761100536, 76642755213473624, 923250078609721236
Offset: 1
Keywords
Examples
For n=3, m = 5*13*17. The "middle" most nearly equal divisor and codivisor of m are y-k=17 and y+k=65, whence a(n) = (65 - 17)/2 = 24.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..36
Programs
-
Python
from math import prod, isqrt from itertools import islice from sympy import sieve, divisors def A350813(n): m = prod(islice(filter(lambda p: p % 4 == 1, sieve),n)) a = isqrt(m) d = max(filter(lambda d: d <= a, divisors(m,generator=True))) return (m//d-d)//2 # Chai Wah Wu, Mar 29 2022
Extensions
Terms corrected by and more terms from Jinyuan Wang, Mar 17 2022
Comments