cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350813 a(n) is the least positive number k such that the product of the first n primes that are congruent to 1 (mod 4) is equal to y^2 - k^2 for some integer y.

Original entry on oeis.org

2, 4, 24, 38, 16, 588, 5782, 5528, 80872, 319296, 3217476, 32301914, 20085008, 166518276, 2049477188, 17443412442, 27905362944, 233647747282, 886295348972, 134684992249108, 98002282636962, 392994156083892, 5283713761100536, 76642755213473624, 923250078609721236
Offset: 1

Views

Author

Richard Peterson, Jan 17 2022

Keywords

Comments

Because y^2-k^2=(y-k)(y+k), a method to make k as small as possible is to try to make y-k and y+k as nearly equal as possible.
Because each of y-k and y+k are made up of primes of form 1 mod 4, algebra shows that k=a(n) is always even.

Examples

			For n=3, m = 5*13*17. The "middle" most nearly equal divisor and codivisor of m are y-k=17 and y+k=65, whence a(n) = (65 - 17)/2 = 24.
		

Crossrefs

Programs

  • Python
    from math import prod, isqrt
    from itertools import islice
    from sympy import sieve, divisors
    def A350813(n):
        m = prod(islice(filter(lambda p: p % 4 == 1, sieve),n))
        a = isqrt(m)
        d = max(filter(lambda d: d <= a, divisors(m,generator=True)))
        return (m//d-d)//2 # Chai Wah Wu, Mar 29 2022

Extensions

Terms corrected by and more terms from Jinyuan Wang, Mar 17 2022