A350823 Array read by antidiagonals: T(m,n) is the domination number of the grid graph P_m X P_n.
1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 4, 4, 3, 2, 3, 4, 4, 4, 4, 4, 3, 3, 4, 5, 6, 6, 5, 4, 3, 3, 5, 6, 7, 7, 7, 6, 5, 3, 4, 5, 7, 7, 8, 8, 7, 7, 5, 4, 4, 6, 7, 8, 9, 10, 9, 8, 7, 6, 4, 4, 6, 8, 10, 11, 11, 11, 11, 10, 8, 6, 4
Offset: 1
Examples
Table begins: =================================== m\n | 1 2 3 4 5 6 7 8 9 ----+------------------------------ 1 | 1 1 1 2 2 2 3 3 3 ... 2 | 1 2 2 3 3 4 4 5 5 ... 3 | 1 2 3 4 4 5 6 7 7 ... 4 | 2 3 4 4 6 7 7 8 10 ... 5 | 2 3 4 6 7 8 9 11 12 ... 6 | 2 4 5 7 8 10 11 12 14 ... 7 | 3 4 6 7 9 11 12 14 16 ... 8 | 3 5 7 8 11 12 14 16 18 ... 9 | 3 5 7 10 12 14 16 18 20 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..276
- Eric Weisstein's World of Mathematics, Domination Number
- Eric Weisstein's World of Mathematics, Grid Graph
Formula
T(m,n) = T(n,m).
T(1,n) = ceiling(n/3); T(2,n) = floor(n/2) + 1.
Comments