A350838 Heinz numbers of partitions with no adjacent parts of quotient 2.
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83
Offset: 1
Keywords
Examples
The terms and their prime indices begin: 1: {} 19: {8} 38: {1,8} 2: {1} 20: {1,1,3} 39: {2,6} 3: {2} 22: {1,5} 40: {1,1,1,3} 4: {1,1} 23: {9} 41: {13} 5: {3} 25: {3,3} 43: {14} 7: {4} 26: {1,6} 44: {1,1,5} 8: {1,1,1} 27: {2,2,2} 45: {2,2,3} 9: {2,2} 28: {1,1,4} 46: {1,9} 10: {1,3} 29: {10} 47: {15} 11: {5} 31: {11} 49: {4,4} 13: {6} 32: {1,1,1,1,1} 50: {1,3,3} 14: {1,4} 33: {2,5} 51: {2,7} 15: {2,3} 34: {1,7} 52: {1,1,6} 16: {1,1,1,1} 35: {3,4} 53: {16} 17: {7} 37: {12} 55: {3,5}
Crossrefs
Programs
-
Mathematica
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; Select[Range[100],And@@Table[FreeQ[Divide@@@Partition[primeptn[#],2,1],2],{i,2,PrimeOmega[#]}]&]
Comments