A350867 Non-palindromic numbers k for which d(k) = d(R(k)), where R(k) is the reversal of k and d(k) is the number of divisors of k.
13, 15, 17, 24, 26, 31, 37, 39, 42, 51, 58, 62, 71, 73, 79, 85, 93, 97, 107, 113, 115, 117, 122, 123, 129, 143, 149, 155, 157, 158, 159, 165, 167, 169, 177, 178, 179, 183, 185, 187, 199, 203, 205, 221, 226, 246, 264, 265, 285, 286, 288, 294, 302, 311, 314, 319
Offset: 1
Examples
264 and 462 are non-palindromic and also d(264) = 16 = d(462), and so both are members.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
isok(k) = my(R = fromdigits(Vecrev(digits(k)))); R != k && numdiv(R) == numdiv(k);
-
Python
from sympy import divisor_count as d def ok(k): Rk = int(str(k)[::-1]); return Rk != k and d(k) == d(Rk) print([k for k in range(320) if ok(k)]) # Michael S. Branicky, Feb 20 2022