cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A062895 Numbers k for which d(k) = d(R(k)), where R(k) is the reversal of k and d(k) is the number of divisors of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 22, 24, 26, 31, 33, 37, 39, 42, 44, 51, 55, 58, 62, 66, 71, 73, 77, 79, 85, 88, 93, 97, 99, 101, 107, 111, 113, 115, 117, 121, 122, 123, 129, 131, 141, 143, 149, 151, 155, 157, 158, 159, 161, 165, 167, 169, 171, 177, 178, 179
Offset: 1

Views

Author

Amarnath Murthy, Jun 30 2001

Keywords

Comments

The sequence s of numbers k for which R(d(k)) = d(R(k)) first differs at s(80) = 262 while a(80) = 252. - Mohammed Yaseen, Mar 24 2023

Examples

			d(24) = 8 and also d(42) = 8, hence both are members.
		

Crossrefs

Cf. A000005 (d), A004086 (R), A002113 (palindromes: subsequence).
Cf. A350867 (subsequence of non-palindromic terms), A085329 (similar with sigma).

Programs

  • Mathematica
    Select[Range[180],DivisorSigma[0,#]==DivisorSigma[0,FromDigits[Reverse[IntegerDigits[#]]]] &] (* Jayanta Basu, May 17 2013 *)
  • PARI
    { n=0; for (m=1, 10^9, x=m; r=0; while (x>0, d=x-10*(x\10); x\=10; r=r*10 + d); if (numdiv(m) == numdiv(r), write("b062895.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 12 2009
    
  • PARI
    isok(k) = numdiv(fromdigits(Vecrev(digits(k)))) == numdiv(k); \\ Michel Marcus, Jul 06 2021
    
  • Python
    from sympy import divisor_count as d
    def ok(n): return d(n) == d(int(str(n)[::-1]))
    print([k for k in range(1, 180) if ok(k)]) # Michael S. Branicky, Mar 24 2023

Extensions

Corrected and extended by Vladeta Jovovic, Jun 30 2001

A085329 Non-palindromic solutions to sigma(R(n)) = sigma(n), where R = A004086 is digit-reversal.

Original entry on oeis.org

528, 825, 1561, 1651, 4064, 4604, 5346, 5795, 5975, 6435, 15092, 15732, 21252, 23751, 25212, 29051, 34536, 38115, 39325, 39516, 51183, 52393, 53295, 53768, 59235, 61593, 63543, 64328, 69368, 70577, 77507, 81558, 82346, 85518, 86396
Offset: 1

Views

Author

Labos Elemer, Jul 04 2003

Keywords

Comments

Without the non-palindromic condition, the first 62 terms would be identical to the list of palindromes A002113. - M. F. Hasler, May 13 2025

Examples

			sigma(528) = sigma(825) = 1488.
		

Crossrefs

Cf. A000203 (sigma), A004086 (R), A350867 (similar with d = sigma_0).

Programs

  • Mathematica
    nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] red[x_] := Reverse[IntegerDigits[x]] Do[s=DivisorSigma[1, n]; s1=DivisorSigma[1, tn[red[n]]]; If[Equal[s, s1]&&!Equal[n, tn[red[n]]], Print[{n, s}]], {n, 1, 1000000}]
    srnQ[n_]:=Module[{idn=IntegerDigits[n],ridn},ridn=Reverse[idn];idn!=ridn && DivisorSigma[1,n]==DivisorSigma[1,FromDigits[ridn]]]; Select[Range[ 100000], srnQ] (* Harvey P. Dale, Oct 25 2011 *)
  • PARI
    select( {is_A085329(n, r=A004086(n))=sigma(n)==sigma(r)&&n!=r}, [1..50000]) \\ M. F. Hasler, May 13 2025
    
  • Python
    from sympy import divisor_sigma as sigma
    def is_A085329(n): return sigma(n)==sigma(r:=int(str(n)[::-1])) and n!=r # M. F. Hasler, May 13 2025

Formula

Solutions to (A000203(x) = A000203(A004086(x)) and A004086(x) <> x).

A354745 Non-repdigit numbers k such that every permutation of the digits of k has the same number of divisors.

Original entry on oeis.org

13, 15, 17, 24, 26, 31, 37, 39, 42, 51, 58, 62, 71, 73, 79, 85, 93, 97, 113, 117, 131, 155, 171, 177, 178, 187, 199, 226, 262, 288, 311, 337, 339, 355, 373, 393, 515, 535, 551, 553, 558, 585, 622, 711, 717, 718, 733, 771, 781, 817, 828, 855, 871, 882, 899, 919, 933, 989, 991, 998
Offset: 1

Views

Author

Metin Sariyar, Jun 05 2022

Keywords

Comments

After a(93) = 84444, no further terms < 10^18. - Michael S. Branicky, Jun 08 2022

Examples

			871 is a term because d(871) = d(817) = d(178) = d(187) = d(718) = d(781) = 4, where d(n) is the number of divisors of n.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000],CountDistinct[DivisorSigma[0,FromDigits /@ Permutations[IntegerDigits[#]]]]==1&&CountDistinct[IntegerDigits[#]]>1&]
  • Python
    from sympy import divisor_count
    from itertools import permutations
    def ok(n):
        s, d = str(n), divisor_count(n)
        if len(set(s)) == 1: return False
        return all(d==divisor_count(int("".join(p))) for p in permutations(s))
    print([k for k in range(5500) if ok(k)]) # Michael S. Branicky, Jun 05 2022
Showing 1-3 of 3 results.