cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A085869 Numbers n such that n and its digit reversal have the same prime signature.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 22, 26, 31, 33, 37, 39, 44, 51, 55, 58, 62, 66, 71, 73, 77, 79, 85, 88, 93, 97, 99, 101, 107, 111, 113, 115, 117, 121, 122, 123, 129, 131, 141, 143, 149, 151, 155, 157, 158, 159, 161, 165, 167, 169, 171, 177, 178, 179, 181
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 06 2003

Keywords

Examples

			15 is a member 15 = 3*5 and 51 = 3*17 both have the prime signature p*q, p and q are primes.
		

Crossrefs

Cf. A062895.

Programs

  • Maple
    s:= n-> sort(map(i-> i[2], ifactors(n)[2])):
    a:= proc(n) option remember; local k; for k from 1+a(n-1) while
          s(k)<>s((p-> parse(cat(seq(p[-i], i=1..length(p)))))(""||k)) do od; k
        end: a(0):=0:
    seq(a(n), n=1..80);  # Alois P. Heinz, Mar 09 2018

Extensions

Corrected and extended by Ray Chandler, Aug 08 2003

A350867 Non-palindromic numbers k for which d(k) = d(R(k)), where R(k) is the reversal of k and d(k) is the number of divisors of k.

Original entry on oeis.org

13, 15, 17, 24, 26, 31, 37, 39, 42, 51, 58, 62, 71, 73, 79, 85, 93, 97, 107, 113, 115, 117, 122, 123, 129, 143, 149, 155, 157, 158, 159, 165, 167, 169, 177, 178, 179, 183, 185, 187, 199, 203, 205, 221, 226, 246, 264, 265, 285, 286, 288, 294, 302, 311, 314, 319
Offset: 1

Views

Author

Daniel Tsai, Feb 18 2022

Keywords

Examples

			264 and 462 are non-palindromic and also d(264) = 16 = d(462), and so both are members.
		

Crossrefs

Cf. A000005 (d), A004086 (R).
Intersection of A029742 (non-palindromes) and A062895 (d(R(k)) = d(k)).

Programs

  • PARI
    isok(k) = my(R = fromdigits(Vecrev(digits(k)))); R != k && numdiv(R) == numdiv(k);
    
  • Python
    from sympy import divisor_count as d
    def ok(k): Rk = int(str(k)[::-1]); return Rk != k and d(k) == d(Rk)
    print([k for k in range(320) if ok(k)]) # Michael S. Branicky, Feb 20 2022

A346113 Base-10 numbers k whose number of divisors equals the number of divisors in R(k), where k is written in all bases from base-2 to base-10 and R(k), the digit reversal of k, is read as a number in the same base.

Original entry on oeis.org

1, 9077, 10523, 10838, 30182, 58529, 73273, 77879, 83893, 244022, 303253, 303449, 304853, 329893, 332249, 334001, 334417, 335939, 336083, 346741, 374617, 391187, 504199, 512695, 516982, 595274, 680354, 687142, 758077, 780391, 792214, 854669, 946217, 948539, 995761, 1008487, 1377067, 1389341
Offset: 1

Views

Author

Scott R. Shannon, Jul 05 2021

Keywords

Comments

There are 633 terms below 50 million and 1253 terms below 100 million. All of those have tau(k), the number of divisors of k, equal to 1, 2, 4, 8 or 16. The first term where tau(k) = 2 is n = 93836531, a prime, which is also the first term of A136634. All terms in A136634 will appear in this sequence, as will all terms in A228768(n) for n>=10. The first term with tau(k) = 4 is 9077, the first with tau(k) = 8 is 595274, and the first with tau(k) = 16 is 5170182. It is possible tau(k) must equal 2^i, with i>=0, although this is unknown.
All known terms are squarefree. - Michel Marcus, Jul 07 2021

Examples

			9077 is a term as the number of divisors of 9077 = tau(9077) = 4, and this equals the number of divisors of R(9077) when written and then read as a base-j number, with 2 <= j <= 10. See the table below for k = 9077.
.
  base | k_base         | R(k_base)      | R(k_base)_10  | tau(R(k_base)_10)
----------------------------------------------------------------------------------
   2   | 10001101110101 | 10101110110001 | 11185         | 4
   3   | 110110012      | 210011011      | 15421         | 4
   4   | 2031311        | 1131302        | 6002          | 4
   5   | 242302         | 203242         | 6697          | 4
   6   | 110005         | 500011         | 38887         | 4
   7   | 35315          | 51353          | 12533         | 4
   8   | 21565          | 56512          | 23882         | 4
   9   | 13405          | 50431          | 33157         | 4
  10   | 9077           | 7709           | 7709          | 4
		

Crossrefs

Cf. A136634 (prime terms), A228768.
Subsequence of A062895.

Programs

  • Mathematica
    Select[Range@100000,Length@Union@DivisorSigma[0,Join[{s=#},FromDigits[Reverse@IntegerDigits[s,#],#]&/@Range[2,10]]]==1&] (* Giorgos Kalogeropoulos, Jul 06 2021 *)
  • PARI
    isok(k) = {my(t= numdiv(k)); for (b=2, 10, my(d=digits(k, b)); if (numdiv(fromdigits(Vecrev(d), b)) != t, return (0));); return(1);} \\ Michel Marcus, Jul 06 2021

A087093 Numbers that have the same number of divisors as their digit reversal, but with different prime signatures.

Original entry on oeis.org

24, 42, 264, 288, 462, 658, 856, 882, 1071, 1128, 1314, 1464, 1701, 2058, 2130, 2132, 2312, 2324, 2424, 2510, 2590, 2616, 2664, 2744, 2765, 2782, 2786, 2872, 2904, 2938, 2975, 3159, 3194, 4010, 4090, 4092, 4094, 4125, 4131, 4136, 4168, 4184, 4220, 4228
Offset: 1

Views

Author

Ray Chandler, Aug 09 2003

Keywords

Comments

Terms in A062895 but not in A085869.

Examples

			24 and 42 are members as 24 and 42 each have 8 divisors but with different prime signatures.
		

Crossrefs

Programs

  • Mathematica
    psQ[n_]:=Sort[Transpose[FactorInteger[n]][[2]]]!=Sort[Transpose[ FactorInteger[FromDigits[Reverse[IntegerDigits[n]]]]][[2]]];ndQ[n_]:= DivisorSigma[0,n]==DivisorSigma[0,FromDigits[Reverse[ IntegerDigits[ n]]]]; Select[Range[5000],psQ[#]&&ndQ[#]&] (* Harvey P. Dale, Nov 11 2011 *)

A280354 Numbers n such that (i) number of divisors of n equals number of divisors of digit reversal of n, (ii) sum of divisors of n equals sum of divisors of digit reversal of n, and (iii) n is not a palindrome.

Original entry on oeis.org

1561, 1651, 5346, 6435, 157661, 166751, 301134, 321853, 358123, 431103, 507955, 511665, 517055, 537495, 539946, 550715, 559705, 566115, 576908, 594735, 649935, 729287, 765677, 776567, 782927, 809675, 834498, 894438, 896898, 898698, 905289, 982509, 1257912, 1473302
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 01 2017

Keywords

Comments

Intersection of A062895 and A085329.
Numbers n such that A000005(n) = A000005(A004086(n)), A000203(n) = A000203(A004086(n)) and A136522(n) = 0.

Examples

			1561 is in the sequence because 1561 has 4 divisors {1, 7, 223, 1561}, 1 + 7 + 223 + 1561 = 1792 and 1651 has 4 divisors {1, 13, 127, 1651}, 1 + 13 + 127 + 1651 = 1792.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1500000], !PalindromeQ[#1] && DivisorSigma[0, #1] == DivisorSigma[0, FromDigits[Reverse[IntegerDigits[#1]]]] && DivisorSigma[1, #1] == DivisorSigma[1,FromDigits[Reverse[IntegerDigits[#1]]]] & ]
    fQ[n_]:=With[{irn=IntegerReverse[n]},!PalindromeQ[n]&&DivisorSigma[0,n]==DivisorSigma[0,irn] && DivisorSigma[1,n] == DivisorSigma[ 1,irn]]; Select[Range[1480000],fQ] (* Harvey P. Dale, Dec 17 2024 *)
  • PARI
    R(n) = eval(concat(Vecrev(Str(n))));
    isok(n) = n != R(n) && numdiv(n) == numdiv(R(n)) && sigma(n) == sigma(R(n));
    for(n=1561, 1473302, if(isok(n), print1(n, ", "))) \\ Indranil Ghosh, Mar 06 2017

A354745 Non-repdigit numbers k such that every permutation of the digits of k has the same number of divisors.

Original entry on oeis.org

13, 15, 17, 24, 26, 31, 37, 39, 42, 51, 58, 62, 71, 73, 79, 85, 93, 97, 113, 117, 131, 155, 171, 177, 178, 187, 199, 226, 262, 288, 311, 337, 339, 355, 373, 393, 515, 535, 551, 553, 558, 585, 622, 711, 717, 718, 733, 771, 781, 817, 828, 855, 871, 882, 899, 919, 933, 989, 991, 998
Offset: 1

Views

Author

Metin Sariyar, Jun 05 2022

Keywords

Comments

After a(93) = 84444, no further terms < 10^18. - Michael S. Branicky, Jun 08 2022

Examples

			871 is a term because d(871) = d(817) = d(178) = d(187) = d(718) = d(781) = 4, where d(n) is the number of divisors of n.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000],CountDistinct[DivisorSigma[0,FromDigits /@ Permutations[IntegerDigits[#]]]]==1&&CountDistinct[IntegerDigits[#]]>1&]
  • Python
    from sympy import divisor_count
    from itertools import permutations
    def ok(n):
        s, d = str(n), divisor_count(n)
        if len(set(s)) == 1: return False
        return all(d==divisor_count(int("".join(p))) for p in permutations(s))
    print([k for k in range(5500) if ok(k)]) # Michael S. Branicky, Jun 05 2022

A346141 Numbers k whose number of divisors equals the number of divisors in each of R(k), k+R(k), R(k+R(k)), abs(k-R(k)), and R(abs(k-R(k))), where R(m) is the digit reversal of m and where the reversals of m do not equal m.

Original entry on oeis.org

117858, 129138, 137976, 138222, 194838, 201569, 222831, 281256, 302844, 439415, 448203, 454016, 500638, 514934, 516378, 526486, 533938, 552926, 560766, 562936, 595016, 607499, 607597, 610454, 610595, 629255, 639265, 652182, 654018, 659358, 667065, 679731, 684625, 795706, 810456, 813179
Offset: 1

Views

Author

Scott R. Shannon, Jul 05 2021

Keywords

Comments

There are 324 terms below 50 million. In that range the number of divisors of the terms is 8,12,16,24,32 or 48. The first term with 8 divisors is 129138, the first with 12 is 302844, the first with 16 is 117858, the first with 24 is 138222, the first with 32 is 26739192, and the first with 48 is 19245366.

Examples

			117858 is a term as the number of divisors of 117858 = tau(117858) = 16, and this equals tau(R(117858)) = tau(858711) = 16, tau(117858+R(117858)) = tau(976569) = 16, tau(R(117858+R(117858))) = tau(965679) = 16, tau(abs(117858-R(117858))) = tau(740853) = 16, and tau(R(abs(117858-R(117858)))) = tau(358047) = 16.
		

Crossrefs

Subsequence of A062895.
Showing 1-7 of 7 results.