cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A062895 Numbers k for which d(k) = d(R(k)), where R(k) is the reversal of k and d(k) is the number of divisors of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 22, 24, 26, 31, 33, 37, 39, 42, 44, 51, 55, 58, 62, 66, 71, 73, 77, 79, 85, 88, 93, 97, 99, 101, 107, 111, 113, 115, 117, 121, 122, 123, 129, 131, 141, 143, 149, 151, 155, 157, 158, 159, 161, 165, 167, 169, 171, 177, 178, 179
Offset: 1

Views

Author

Amarnath Murthy, Jun 30 2001

Keywords

Comments

The sequence s of numbers k for which R(d(k)) = d(R(k)) first differs at s(80) = 262 while a(80) = 252. - Mohammed Yaseen, Mar 24 2023

Examples

			d(24) = 8 and also d(42) = 8, hence both are members.
		

Crossrefs

Cf. A000005 (d), A004086 (R), A002113 (palindromes: subsequence).
Cf. A350867 (subsequence of non-palindromic terms), A085329 (similar with sigma).

Programs

  • Mathematica
    Select[Range[180],DivisorSigma[0,#]==DivisorSigma[0,FromDigits[Reverse[IntegerDigits[#]]]] &] (* Jayanta Basu, May 17 2013 *)
  • PARI
    { n=0; for (m=1, 10^9, x=m; r=0; while (x>0, d=x-10*(x\10); x\=10; r=r*10 + d); if (numdiv(m) == numdiv(r), write("b062895.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 12 2009
    
  • PARI
    isok(k) = numdiv(fromdigits(Vecrev(digits(k)))) == numdiv(k); \\ Michel Marcus, Jul 06 2021
    
  • Python
    from sympy import divisor_count as d
    def ok(n): return d(n) == d(int(str(n)[::-1]))
    print([k for k in range(1, 180) if ok(k)]) # Michael S. Branicky, Mar 24 2023

Extensions

Corrected and extended by Vladeta Jovovic, Jun 30 2001

A097647 Non-palindromic numbers n such that phi(n) = phi(reversal(n)).

Original entry on oeis.org

190, 427, 429, 724, 924, 4147, 4697, 6276, 6726, 7414, 7964, 9079, 9709, 10040, 10940, 14450, 15860, 19190, 20493, 20553, 28092, 28215, 29082, 35502, 39402, 41847, 42777, 44629, 46899, 49929, 51282, 51845, 53075, 54815, 57035, 57677
Offset: 1

Views

Author

Farideh Firoozbakht, Aug 28 2004

Keywords

Comments

If n is in the sequence and 10 doesn't divide n then reversal(n) is also in the sequence. There exists three terms of this sequence less than 180000000 that reversal of them are primes,i.e. 10040,14450 and 1865170. This sequence has 445 composite terms less than 20000000 and there is no prime term up to 222000000. Has this sequence at least one prime term?
(190/99)*(100^m-1) is in the sequence iff 3 does not divide m (m is a term of A001651). So the sequence is infinite. A229903: 190, 19190, 191919190, 19191919190, ... are such terms. - Jahangeer Kholdi, Oct 17 2013
There are no prime terms < 10^10. - Donovan Johnson, Oct 18 2013

Examples

			10040 is in the sequence because phi(10040)=phi(4001)=4000.
		

Crossrefs

Programs

  • Mathematica
    Do[If[n!=FromDigits[Reverse[IntegerDigits[n]]]&&EulerPhi[n]==EulerPhi[ FromDigits[Reverse[IntegerDigits[n]]]], Print[n]], {n, 80000}]

A281879 Non-palindromic numbers k such that sigma(k) | sigma(R(k)), where R(k) is the digit reversal of k.

Original entry on oeis.org

15, 16, 17, 59, 129, 165, 176, 187, 205, 273, 276, 299, 429, 446, 478, 528, 599, 825, 1034, 1043, 1135, 1209, 1239, 1515, 1561, 1565, 1616, 1651, 1665, 1717, 1776, 1887, 2086, 2165, 2178, 2255, 2455, 2515, 2618, 2739, 2829, 3489, 4008, 4064, 4475, 4604, 5346, 5795
Offset: 1

Views

Author

Paolo P. Lava, Feb 01 2017

Keywords

Examples

			a(1) = 15 because sigma(51) / sigma(15) = 72 / 24 = 3;
a(2) = 16 because sigma(61) / sigma(16) = 62 / 31 = 2;
a(3) = 17 because sigma(71) / sigma(17) = 72 / 18 = 4.
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=proc(w) local x, y, z; x:=w; y:=0;
    for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end:
    P:=proc(q) local n; for n from 1 to q do
    if n<>T(n) then if type(sigma(T(n))/sigma(n),integer) then print(n); fi; fi; od; end: P(10^6);
  • Mathematica
    Select[Range[6000],!PalindromeQ[#]&&Mod[DivisorSigma[1,IntegerReverse[#]],DivisorSigma[ 1,#]] ==0&] (* Harvey P. Dale, Dec 19 2023 *)

A280354 Numbers n such that (i) number of divisors of n equals number of divisors of digit reversal of n, (ii) sum of divisors of n equals sum of divisors of digit reversal of n, and (iii) n is not a palindrome.

Original entry on oeis.org

1561, 1651, 5346, 6435, 157661, 166751, 301134, 321853, 358123, 431103, 507955, 511665, 517055, 537495, 539946, 550715, 559705, 566115, 576908, 594735, 649935, 729287, 765677, 776567, 782927, 809675, 834498, 894438, 896898, 898698, 905289, 982509, 1257912, 1473302
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 01 2017

Keywords

Comments

Intersection of A062895 and A085329.
Numbers n such that A000005(n) = A000005(A004086(n)), A000203(n) = A000203(A004086(n)) and A136522(n) = 0.

Examples

			1561 is in the sequence because 1561 has 4 divisors {1, 7, 223, 1561}, 1 + 7 + 223 + 1561 = 1792 and 1651 has 4 divisors {1, 13, 127, 1651}, 1 + 13 + 127 + 1651 = 1792.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1500000], !PalindromeQ[#1] && DivisorSigma[0, #1] == DivisorSigma[0, FromDigits[Reverse[IntegerDigits[#1]]]] && DivisorSigma[1, #1] == DivisorSigma[1,FromDigits[Reverse[IntegerDigits[#1]]]] & ]
    fQ[n_]:=With[{irn=IntegerReverse[n]},!PalindromeQ[n]&&DivisorSigma[0,n]==DivisorSigma[0,irn] && DivisorSigma[1,n] == DivisorSigma[ 1,irn]]; Select[Range[1480000],fQ] (* Harvey P. Dale, Dec 17 2024 *)
  • PARI
    R(n) = eval(concat(Vecrev(Str(n))));
    isok(n) = n != R(n) && numdiv(n) == numdiv(R(n)) && sigma(n) == sigma(R(n));
    for(n=1561, 1473302, if(isok(n), print1(n, ", "))) \\ Indranil Ghosh, Mar 06 2017

A259077 Non-palindromic composite numbers such that n' = [Rev(n)]', where n' is the arithmetic derivative of n.

Original entry on oeis.org

366, 663, 3245, 3685, 5423, 5863, 8178, 8718, 14269, 15167, 16237, 18449, 18977, 36679, 73261, 76151, 77981, 94481, 96241, 97663, 140941, 149041, 150251, 152051, 196891, 198691, 302363, 308459, 319853, 335148, 358913, 363203, 841533, 921239, 932129, 954803, 958099, 990859
Offset: 1

Views

Author

Paolo P. Lava, Jun 18 2015

Keywords

Examples

			366' = 311 = 663';
3245' = 999 = 5423'; etc.
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=proc(w) local x,y,z; x:=w; y:=0;
    for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10);
    od; y; end: P:=proc(q) local a,b,p,n;
    for n from 1 to q do if not isprime(n) then if n<>T(n) then a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
    b:=T(n)*add(op(2,p)/op(1,p),p=ifactors(T(n))[2]);
    if a=b then print(n); fi; fi; fi; od; end: P(10^9);

Formula

Solutions to A003415(n) = A003415(A004086(n)), with A004086(n) <> n.
Showing 1-5 of 5 results.