cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A281880 Non-palindromic numbers k such that phi(k) | phi(R(k)), where R(k) is the digits reversal of k.

Original entry on oeis.org

12, 15, 18, 19, 36, 37, 56, 124, 126, 132, 165, 168, 178, 189, 190, 192, 198, 199, 219, 234, 238, 298, 308, 348, 387, 396, 418, 427, 429, 468, 506, 518, 724, 756, 924, 1004, 1066, 1078, 1089, 1094, 1107, 1143, 1209, 1212, 1314, 1332, 1358, 1364, 1386, 1445, 1452
Offset: 1

Views

Author

Paolo P. Lava, Feb 01 2017

Keywords

Examples

			a(1) = 12 because phi(21) / phi(12) = 12 / 4 = 3;
a(2) = 15 because phi(51) / phi(15) = 32 / 8 = 4;
a(3) = 18 because phi(81) / phi(18) = 54 / 6 = 9.
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=proc(w) local x, y, z; x:=w; y:=0;
    for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end:
    P:=proc(q) local n; for n from 1 to q do
    if n<>T(n) then if type(phi(T(n))/phi(n),integer) then print(n); fi; fi; od; end: P(10^6);
  • Mathematica
    Select[Range@ 1500, Function[k, And[Reverse@ # != #, Divisible[EulerPhi[FromDigits@ Reverse@ #], EulerPhi@ k]] &@ IntegerDigits@ k]] (* Michael De Vlieger, Feb 04 2017 *)

A097648 a(n) is the least non-palindromic number m such that phi(m)=phi(reversal(m))=4*10^(n+2), or 0 if no such number exists.

Original entry on oeis.org

10040, 110440, 1014040, 11154440, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Farideh Firoozbakht, Sep 04 2004

Keywords

Comments

It seems that 10 divides all terms of this sequence.

Examples

			a(4)=11154440 because phi(11154440)=phi(04445111)=4000000 and 11154440 is the earliest non-palindromic number with this property.
		

Crossrefs

Subsequence of A097647.

Programs

  • Mathematica
    a[n_]:=(For[m=4*10^(n+2), !(m!=FromDigits[Reverse[IntegerDigits[m]]] &&EulerPhi[m]==EulerPhi[FromDigits[Reverse[IntegerDigits [m]]]]==4*10^(n+2)), m++ ];m);Do[Print[a[n]], {n, 4}]

Formula

a[n_]:=(For[m=4*10^(n+2), !(m!=FromDigits[Reverse[IntegerDigits[m]]] &&EulerPhi[m]==EulerPhi[FromDigits[Reverse[IntegerDigits [m]]]]==4*10^(n+2)), m++ ];m)

Extensions

Better definition and more terms from David Wasserman, Dec 28 2007
a(27)-a(49) from Max Alekseyev, Oct 17 2008; Aug 15 2013; Jun 14 2022

A229903 a(n) = (190/99)*(100^A001651(n)-1).

Original entry on oeis.org

190, 19190, 191919190, 19191919190, 191919191919190, 19191919191919190, 191919191919191919190, 19191919191919191919190, 191919191919191919191919190, 19191919191919191919191919190, 191919191919191919191919191919190
Offset: 1

Views

Author

Jahangeer Kholdi, Oct 17 2013

Keywords

Comments

This sequence is a subsequence of A097647. Because if 3 does not divide m then gcd(100^m-1,19*91)=1 and we have phi(190*(100^m-1)/99)=phi(190)*phi((100^m-1)/9)=phi(91)*phi((100^m-1)/99)=phi(91*(100^m-1)/99)=phi(reversal(190*(100^m-1)/99)).

Crossrefs

Programs

  • Mathematica
    Table[190/99*(100^Floor[(3n-1)/2]-1),{n,11}]
  • PARI
    Vec(190*x*(10000*x^2+100*x+1)/((x-1)*(1000*x-1)*(1000*x+1)) + O(x^100)) \\ Colin Barker, Nov 01 2013

Formula

a(n) = (100/99)*(100^floor((3n-1)/2)-1).
G.f.: 190*x*(10000*x^2+100*x+1) / ((x-1)*(1000*x-1)*(1000*x+1)). - Colin Barker, Nov 01 2013

A259077 Non-palindromic composite numbers such that n' = [Rev(n)]', where n' is the arithmetic derivative of n.

Original entry on oeis.org

366, 663, 3245, 3685, 5423, 5863, 8178, 8718, 14269, 15167, 16237, 18449, 18977, 36679, 73261, 76151, 77981, 94481, 96241, 97663, 140941, 149041, 150251, 152051, 196891, 198691, 302363, 308459, 319853, 335148, 358913, 363203, 841533, 921239, 932129, 954803, 958099, 990859
Offset: 1

Views

Author

Paolo P. Lava, Jun 18 2015

Keywords

Examples

			366' = 311 = 663';
3245' = 999 = 5423'; etc.
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=proc(w) local x,y,z; x:=w; y:=0;
    for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10);
    od; y; end: P:=proc(q) local a,b,p,n;
    for n from 1 to q do if not isprime(n) then if n<>T(n) then a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
    b:=T(n)*add(op(2,p)/op(1,p),p=ifactors(T(n))[2]);
    if a=b then print(n); fi; fi; fi; od; end: P(10^9);

Formula

Solutions to A003415(n) = A003415(A004086(n)), with A004086(n) <> n.

A259365 Numbers n such that phi(Rev(n)) - phi(n) = n.

Original entry on oeis.org

28, 139872, 2764928, 34141176, 329774256
Offset: 1

Views

Author

Paolo P. Lava, Jun 25 2015

Keywords

Comments

a(6) > 3*10^10. - Giovanni Resta, Jun 26 2015

Examples

			phi(82) - phi(28) = 40 - 12 = 28;
phi(278931) - phi(139872) = 184032 - 44160 = 139872; etc.
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=proc(w) local x,y,z; x:=w; y:=0;
    for z from 1 to ilog10(x)+1 do
    y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end:
    P:=proc(q) local a,j,k,n; for n from 1 to q do
    if phi(T(n))-phi(n)=n then print(n); fi; od; end: P(10^9);

Formula

Solutions of the equation A000010( A004086(n) ) - A000010(n) = n.
Showing 1-5 of 5 results.