A350868 a(n) is the first prime p such that the next n primes are p+2*k^2 for k=1..n.
2, 3, 29, 569, 6701, 64919, 1720289, 256828391, 33090566651, 248804328761, 55130906480861, 119321483551349
Offset: 0
Examples
a(3) = 569 because the next 3 primes after 569 are 571 = 569 + 2*1^2, 577 = 569 + 2*2^2, 587 = 569 + 2*3^2, and 569 is the first prime that works.
Crossrefs
Cf. A212769.
Programs
-
Maple
P:= select(isprime, [2,seq(i,i=3..2*10^6,2)]): f:= proc(n) local k; for k from 1 do if P[n+k] <> P[n]+2*k^2 then return k-1 fi od end proc: V:= Array(0..6): for n from 1 to nops(P)-21 do v:= H(n); if V[v] = 0 then V[v]:= P[n] fi; od: convert(V,list);
-
Python
from sympy import prime, nextprime def A350868(n): if n < 2: return 2+n qlist = [prime(i)-2 for i in range(2,n+2)] p = prime(n+1) mlist = [2*k**2 for k in range(1,n+1)] while True: if qlist == mlist: return p-mlist[-1] qlist = [q-qlist[0] for q in qlist[1:]] r = nextprime(p) qlist.append(r-p+qlist[-1]) p = r # Chai Wah Wu, Jan 24 2022
Extensions
a(7) from David A. Corneth, Jan 20 2022
a(8) from Chai Wah Wu, Jan 25 2022
a(9) from Martin Ehrenstein, Jan 26 2022
a(10)-a(11) from Martin Ehrenstein, Jan 31 2022
Comments