A350871 Number of well-rounded sublattices of index n in square lattice.
1, 1, 0, 1, 2, 0, 0, 1, 1, 2, 0, 2, 2, 0, 2, 1, 2, 1, 0, 2, 0, 0, 0, 4, 3, 2, 0, 0, 2, 2, 0, 1, 0, 2, 2, 1, 2, 0, 0, 4, 2, 0, 0, 0, 2, 0, 0, 4, 1, 3, 0, 2, 2, 0, 0, 0, 0, 2, 0, 8, 2, 0, 2, 1, 4, 0, 0, 2, 0, 2, 0, 1, 2, 2, 4, 0, 2, 0, 0, 6, 1, 2, 0, 2, 4, 0, 0
Offset: 1
Keywords
Examples
a(4) = 1 well-rounded index-4 sublattice has basis (2, 0), (0, 2). a(5) = 2 w.-r. index-5 sublattices have bases (2, 1), (-1, 2) and (1, 2), (-2, 1). At index 12, for the first time centered rectangular sublattices occur, there are a(12) = 2 of them with the bases (3, 2), (3, -2) and (2, 3), (-2, 3).
Links
- Andrey Zabolotskiy, Table of n, a(n) for n = 1..10000
- Michael Baake and Peter Zeiner, Geometric enumeration problems for lattices and embedded Z-modules, arXiv:1709.07317 [math.MG], 2017; in: Aperiodic Order, vol. 2: Crystallography and Almost Periodicity, eds. M. Baake and U. Grimm, Cambridge University Press, Cambridge (2017), pp. 73-172. See table "Some counts of the enumeration problems for Z^2"; beware of the typo in the 60th term.
- Peter Zeiner, Coincidence Site Lattices and Coincidence Site Modules, Thesis, Universität Bielefeld, 2015.
- Index entries for sequences related to sublattices
- Index entries for sequences related to square lattice
Crossrefs
Programs
-
Mathematica
fa[s_] := Count[Divisors[s], _?(#^2 < (s/#)^2 < 3 #^2 &)]; f0[s_] := If[OddQ[s], 0, 2 fa[s/2]]; f1[s_] := With[{e2 = IntegerExponent[s, 2]}, 2 (-1)^e2 fa[s/2^e2]]; pr[s_] := Count[Range[s], _?(Mod[#^2 + 1, s] == 0 &)]; (*A000089*) sq[n_] := Sum[pr[n/d^2], {d, Select[Range[n], Mod[n, #^2] == 0 &]}]; (*A002654*) a[n_] := sq[n] + Sum[pr[n/d] (f0[d] + f1[d]), {d, Divisors[n]}]; Array[a, 87]
Formula
See Zeiner (2015), Theorem 7.3.1. [Note that the formula from Baake & Zeiner (2017) contains an error.]
Comments