A350886 Let X,Y,Z be positive integer solutions to X^2 = Sum_{j=0..Y-1} (1+Z*j)^2, where solutions for Y or Z < 1 are excluded. This sequence lists the sorted values for X.
54, 70, 1618, 2344, 2541, 27597, 48486, 73795, 184162, 320739, 648009, 766669, 990983, 1452962, 3816551, 4456264, 6287116, 23251921, 37396339, 43540374, 51136014, 53005618, 63668661, 147115419, 205943541, 236317895, 253970684, 275914803, 386480829, 629467300
Offset: 1
Keywords
Examples
a(1) = 54 and A350887(1) = 4, A350888(1) = 14: 54^2 = 1^2 + 15^2 + 29^2 + 43^2. a(2) = 70 and A350887(2) = 24, A350888(2) = 1: 70^2 = 1^2 + 2^2 + 3^2 + ... + 23^2 + 24^2. This is the classic solution for the cannonball problem.
Links
- Thomas Scheuerle, Some solutions to this problem sorted by A350887.
- Anji Dong, Katerina Saettone, Kendra Song, and Alexandru Zaharescu, An Equidistribution Result for Differences Associated with Square Pyramidal Numbers, arXiv:2412.10097 [math.NT], 2024. See p. 1.
- Thomas Scheuerle, Recursive solution formulas.
- Index entries for sequences related to sums of squares.
Crossrefs
Programs
-
PARI
sqtest(n,c)={q=1; for(t=2, c, t+=n; q+=(t*t); if(issquare(q), break)); q} z=500000; a=[];for(n=0,z,r=sqtest(n,z); if(issquare(r), a=concat(a, sqrtint(r)))); a=vecsort(a) \\ Last valid value for z=500000 is 990983.
Formula
a(n)^2 = A350888(n)^2*binomial(2*A350887(n), 3)/4 + 2*A350888(n)*binomial(A350887(n), 2) + A350887(n).
a(n)^2 = c*((b*(4*b*c^2-(6*c-2)*b + 12*(c-1)) + 12)/12), with c = A350887(n) and b = A350888(n). Expanded to see factors more clearly.
a(n)^2 = c*b^2*( ((1/b) + (c-1)/2)^2 + (c^2-1)/12 ). Shorter form of above.
(12*a(n)^2) mod A350887(n) = 0.
Choose n such that A350887(n) = 4 and a(n) = 54 and A350888(n) = 14, then we may find further solutions recursively for all A350887(m) = 4 with
x = -A350888(n) = -14; y = -a(n) = -54 and also x = A350888(n) = 14; y = a(n) = 54. Recursive solutions:
x_(n+1) = 15*x_n + 4*y_n + 6
y_(n+1) = 56*x_n + 15*y_n + 24 and also:
x_(n+1) = 15*x_n - 4*y_n + 6
y_(n+1) = -56*x_n + 15*y_n - 24.
Choose n such that A350887(n) = 9 and a(n) = 27597 and A350888(n) = 1932, then we may find further solutions recursively for all A350887(m) = 9 with x = -A350888(n) = -1932; y = -a(n) = -27597 and also x = A350888(n) = 1932; y = a(n) = 27597. Recursive solutions:
x_(n+1) = 4999*x_n + 350*y_n + 882
y_(n+1) = 71400*x_n + 4999*y_n + 12600 and also:
x_(n+1) = 4999*x_n - 350*y_n + 6
y_(n+1) = -71400*x_n + 4999*y_n - 12600.
Further recursive solution formulas for other values of A350887(n) will be provided in a link as for some values the coefficients become very large sometimes with several hundred digits.
a(n) != a(m) if n != m.
Comments