A350888 Let X,Y,Z be positive integer solutions to X^2 = Sum_{j=0..Y-1} (1+Z*j)^2, where solutions for Y or Z < 1 are excluded. This sequence lists the values for Z sorted by X.
14, 1, 432, 8, 13, 1932, 12958, 367, 30, 3, 1554, 194, 5082, 388320, 1349, 15254, 178542, 163, 181, 11636654, 418782, 6791, 11928, 192638, 1086, 2209447, 5166, 19317900, 1981979, 262, 348711312, 4799102, 7379, 60240793
Offset: 1
Examples
a(1) = 14 and A350886(1) = 54, A350887(1) = 4: 54^2 = 1^2 + 15^2 + 29^2 + 43^2. a(2) = 1 and A350886(2) = 70, A350887(2) = 24: 70^2 = 1^2 + 2^2 + 3^2 + ... + 23^2 + 24^2. This is the classic solution for the cannonball problem.
Links
- Thomas Scheuerle, Some solutions to this problem sorted by A350887.
- Anji Dong, Katerina Saettone, Kendra Song, and Alexandru Zaharescu, An Equidistribution Result for Differences Associated with Square Pyramidal Numbers, arXiv:2412.10097 [math.NT], 2024. See p. 1.
- Thomas Scheuerle, Recursive solution formulas.
- Index entries for sequences related to sums of squares.
Crossrefs
Programs
-
PARI
sqtest(n, c)={q=1; for(t=2, c, t+=n; q+=(t*t); if(issquare(q), break)); q} z=500000; b=[; ]; for(n=0, z, r=sqtest(n, z); if(issquare(r), b=concat(b, [sqrtint(r); n+1]))); b=vecsort(b, 1); vector(#b, k, b[2,k]) \\ Last valid value for z=500000 is 5082.
Formula
A350886(n)^2 = c*((b*(4*b*c^2-(6*c-2)*b + 12*(c-1)) + 12)/12), with c = A350887(n) and b = a(n). Expanded to see factors more clearly.
A350886(n)^2 = c*b^2*( ((1/b) + (c-1)/2)^2 + (c^2-1)/12 ). Shorter form of above.
a(n) != a(m) if n != m.
Let s(n) be the sequence of numbers such that A350887(s(n)) = 4 and s(n) is sorted in ascending order, then a(s(n)) has the ordinary generating function (2*(-7 + z))/(-1 + 31*z - 31*z^2 + z^3).
Let s(n) be the sequence of numbers such that A350887(s(n)) = 49 and s(n) is sorted in ascending order, then a(s(n)) has the ordinary generating function (-13 + z)/(-1 + 391*z - 391*z^2 + z^3).
Comments