A350893 Number of partitions of n such that (smallest part) = 2*(number of parts).
0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 10, 10, 12, 13, 15, 16, 19, 20, 23, 25, 28, 30, 34, 36, 40, 43, 47, 50, 56, 59, 65, 70, 77, 82, 91, 97, 107, 115, 126, 135, 149, 159, 174, 187, 204, 218, 238, 254, 276, 295, 320, 341, 370, 394, 426, 455, 491, 523, 565
Offset: 1
Keywords
Programs
-
Mathematica
nmax = 100; Rest[CoefficientList[1 + Series[Sum[x^(2*j^2)*(1 - x^j)/Product[1 - x^i, {i, 1, j}], {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jan 21 2022 *)
-
PARI
my(N=99, x='x+O('x^N)); concat(0, Vec(sum(k=1, sqrtint(N\2), x^(2*k^2)/prod(j=1, k-1, 1-x^j))))
Formula
G.f.: Sum_{k>=1} x^(2*k^2)/Product_{j=1..k-1} (1-x^j).
a(n) ~ (1 - alfa) * exp(2*sqrt(n*(2*log(alfa)^2 + polylog(2, 1 - alfa)))) * (2*log(alfa)^2 + polylog(2, 1 - alfa))^(1/4) / (2*sqrt(Pi) * sqrt(4 - 3*alfa) * n^(3/4)), where alfa = 0.72449195900051561158837228218703656578649448135... is positive real root of the equation alfa^4 + alfa - 1 = 0. - Vaclav Kotesovec, Jan 21 2022