cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A350889 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) is the number of partitions of n such that k*(smallest part) = (number of parts).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 3, 2, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 2, 4, 5, 5, 3, 2, 1, 1, 2, 3, 4, 7, 6, 5, 3, 2, 1, 1, 3, 4, 5, 8, 9, 7, 5, 3, 2, 1, 1, 3, 5, 6, 10, 11, 10, 7, 5, 3, 2, 1, 1, 4, 6, 7, 12, 15, 13, 11, 7, 5, 3, 2, 1, 1, 4, 8, 8, 14, 18, 18, 14, 11, 7, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 21 2022

Keywords

Comments

Column k is asymptotic to r^2 * (k*log(r)^2 + polylog(2, r^2))^(1/4) * exp(2*sqrt((k*log(r)^2 + polylog(2, r^2))*n)) / (2*sqrt(Pi*k*(k - (k-2)*r^2)) * n^(3/4)), where r is the positive real root of the equation r^2 = 1 - r^k. - Vaclav Kotesovec, Oct 14 2024

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 1;
  1, 1, 1, 1;
  1, 1, 2, 1, 1;
  1, 1, 2, 2, 1, 1;
  1, 1, 3, 3, 2, 1, 1;
  1, 2, 3, 4, 3, 2, 1, 1;
  2, 2, 4, 5, 5, 3, 2, 1, 1;
  2, 3, 4, 7, 6, 5, 3, 2, 1, 1;
  3, 4, 5, 8, 9, 7, 5, 3, 2, 1, 1;
		

Crossrefs

Row sums give A168657.

Programs

  • PARI
    T(n, k) = polcoef(sum(i=1, sqrtint(n\k), x^(k*i^2)/prod(j=1, k*i-1, 1-x^j+x*O(x^n))), n);
    
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def A(n)
      a = Array.new(n, 0)
      partition(n, 1, n).each{|ary|
        (1..n).each{|i|
          a[i - 1] += 1 if i * ary[-1] == ary.size
        }
      }
      a
    end
    def A350889(n)
      (1..n).map{|i| A(i)}.flatten
    end
    p A350889(14)

Formula

G.f. of column k: Sum_{i>=1} x^(k*i^2)/Product_{j=1..k*i-1} (1-x^j).

A348164 Number of partitions of n such that 5*(greatest part) = (number of parts).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 5, 5, 7, 8, 10, 11, 15, 16, 20, 22, 26, 28, 35, 38, 46, 52, 62, 70, 85, 95, 112, 127, 148, 166, 195, 219, 254, 288, 332, 375, 435, 489, 562, 635, 726, 817, 936, 1051, 1198, 1348, 1531, 1721, 1957, 2196, 2489
Offset: 1

Views

Author

Seiichi Manyama, Jan 25 2022

Keywords

Comments

Also, the number of partitions of n such that (greatest part) = 5*(number of parts).

Examples

			a(19) = 3 counts these partitions:
[3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 1].
		

Crossrefs

Column 5 of A350879.

Programs

  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Sum[x^(6*k-1) * Product[(1 - x^(5*k+j-1)) / (1 - x^j), {j, 1, k-1}], {k, 1, nmax/6 + 1}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 15 2024 *)
    nmax = 100; p = x^4; s = x^4; Do[p = Normal[Series[p*x^6*(1 - x^(6*k - 1))*(1 - x^(6*k))*(1 - x^(6*k + 1))*(1 - x^(6*k + 2))*(1 - x^(6*k + 3))*(1 - x^(6*k + 4))/((1 - x^(5*k + 4))*(1 - x^(5*k + 3))*(1 - x^(5*k + 2))*(1 - x^(5*k + 1))*(1 - x^(5*k))*(1 - x^k)), {x, 0, nmax}]]; s += p;, {k, 1, nmax/6 + 1}]; Take[CoefficientList[s, x], nmax] (* Vaclav Kotesovec, Oct 16 2024 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, N, x^(6*k-1)*prod(j=1, k-1, (1-x^(5*k+j-1))/(1-x^j)))))

Formula

G.f.: Sum_{k>=1} x^(6*k-1) * Product_{j=1..k-1} (1-x^(5*k+j-1))/(1-x^j).
a(n) ~ 5 * Pi^5 * exp(Pi*sqrt(2*n/3)) / (9 * 2^(3/2) * n^(7/2)). - Vaclav Kotesovec, Oct 17 2024
Showing 1-2 of 2 results.