A350898 Number of partitions of n such that (smallest part) = 4*(number of parts).
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 17, 17, 19, 20, 22, 23, 26, 27, 30, 32, 35, 37, 41, 43, 47, 50, 54, 57, 62, 65, 70, 74, 79, 83, 89, 93, 99, 104
Offset: 1
Keywords
Programs
-
PARI
my(N=99, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, sqrtint(N\4), x^(4*k^2)/prod(j=1, k-1, 1-x^j))))
Formula
G.f.: Sum_{k>=1} x^(4*k^2)/Product_{j=1..k-1} (1-x^j).
a(n) ~ (1 - alfa) * exp(2*sqrt(n*(4*log(alfa)^2 + polylog(2, 1 - alfa)))) * (4*log(alfa)^2 + polylog(2, 1 - alfa))^(1/4) / (2*sqrt(Pi) * sqrt(8 - 7*alfa) * n^(3/4)), where alfa = 0.8116523200278026483934188589034567041719182934245... is positive real root of the equation alfa^8 + alfa - 1 = 0. - Vaclav Kotesovec, Jan 22 2022