cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A373059 a(n) = Sum_{1 <= x_1, x_2 <= n} gcd(x_1, n)/gcd(x_1, x_2, n).

Original entry on oeis.org

1, 5, 13, 25, 41, 65, 85, 121, 157, 205, 221, 325, 313, 425, 533, 569, 545, 785, 685, 1025, 1105, 1105, 1013, 1573, 1441, 1565, 1777, 2125, 1625, 2665, 1861, 2617, 2873, 2725, 3485, 3925, 2665, 3425, 4069, 4961, 3281, 5525, 3613, 5525, 6437, 5065, 4325, 7397, 5965
Offset: 1

Views

Author

Seiichi Manyama, May 21 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(2*e)*((e+1)*p^2 + 2*p-e) + 1)/(p+1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 27 2024 *)
  • PARI
    a(n) = sum(i=1, n, sum(j=1, n, gcd(i, n)/gcd([i, j, n])));
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; (p^(2*e)*((e+1)*p^2 + 2*p-e) + 1)/(p+1)^2);} \\ Amiram Eldar, May 27 2024

Formula

a(n) = Sum_{d|n} phi(n/d) * (n/d) * sigma_2(d^2)/sigma(d^2).
From Amiram Eldar, May 27 2024: (Start)
Multiplicative with a(p^e) = (p^(2*e)*((e+1)*p^2 + 2*p-e) + 1)/(p+1)^2.
Dirichlet g.f.: zeta(s) * zeta(s-2)^2 / zeta(s-1)^2.
Sum_{k=1..n} a(k) ~ (2*zeta(3)*n^3/(15*zeta(4))) * (log(n) + 2*gamma - 1/3 - 2*zeta'(2)/zeta(2) + zeta'(3)/zeta(3)), where gamma is Euler's constant (A001620). (End)
Showing 1-1 of 1 results.