A350917 a(0) = 1, a(1) = 2, and a(n) = 23*a(n-1) - a(n-2) - 4 for n >= 2.
1, 2, 41, 937, 21506, 493697, 11333521, 260177282, 5972743961, 137112933817, 3147624733826, 72258255944177, 1658792261982241, 38079963769647362, 874180374439907081, 20068068648348215497, 460691398537569049346, 10575834097715739919457, 242783492848924449098161, 5573444501427546589338242, 127946440039984647105681401, 2937194676418219336841333977
Offset: 0
Links
- Sebastian et al., Are there infinitely many positive integer solutions to (3+3k+l)^2=m(kl-k^3-1)?, MathOverflow, 2022.
- Index entries for linear recurrences with constant coefficients, signature (24,-24,1).
Crossrefs
Formula
G.f.: ( -1+22*x-17*x^2 ) / ( (x-1)*(x^2-23*x+1) ). - R. J. Mathar, Feb 07 2022
Comments