A350934 a(n) is the smallest number m such that tau(m - 1) = tau(m + 1) = tau(m) + n or 0 if no such m exists, where tau(k) = A000005(k).
34, 9, 7, 964324, 19, 3822025, 41, 15129, 341, 427166224, 199, 700569, 1241, 11923111249, 919, 12376324, 6641, 34539129, 12221, 363016809, 3401, 56776225, 5741, 199809, 52865, 48045571249, 47081, 3764067904, 21113, 19035769, 18089, 145371249, 59291, 2219069449
Offset: 0
Keywords
Examples
a(3) = 964324 because 964324 is the smallest number m such that tau(m-1) = tau(m+1) = tau(m)+3; tau(964323) = tau(964325) = tau(964324)+3 = 9+3 = 12.
Programs
-
Magma
Ax:=func
; [Ax(n): n in [0..8]] -
Mathematica
seq[m_, nmax_] := Module[{s = Table[0, {m + 1}], c = 0, d1 = 1, d2 = 2, n = 3, d, k}, While[c < m + 1 && n < nmax, d = DivisorSigma[0, n]; If[d1 == d, k = d - d2 + 1; If[k >= 1 && k <= m + 1 && s[[k]] == 0, s[[k]] = n - 1; c++]]; n++; d1 = d2; d2 = d]; TakeWhile[s, # > 0 &]]; seq[8, 10^7] (* Amiram Eldar, Jan 26 2022 *)
Extensions
More terms from Amiram Eldar, Jan 26 2022
Comments