A350941 Number of odd conjugate parts minus number of even conjugate parts in the integer partition with Heinz number n.
0, 1, 2, -1, 3, 0, 4, 1, -2, 1, 5, 2, 6, 2, -1, -1, 7, 0, 8, 3, 0, 3, 9, 0, -3, 4, 2, 4, 10, 1, 11, 1, 1, 5, -2, -2, 12, 6, 2, 1, 13, 2, 14, 5, 3, 7, 15, 2, -4, -1, 3, 6, 16, 0, -1, 2, 4, 8, 17, -1, 18, 9, 4, -1, 0, 3, 19, 7, 5, 0, 20, 0, 21, 10, 1, 8, -3, 4
Offset: 0
Keywords
Examples
First positions n such that a(n) = 4, 3, 2, 1, 0, -1, -2, -3, -4, together with their prime indices, are: 7: (4) 5: (3) 3: (2) 2: (1) 1: () 4: (1,1) 9: (2,2) 25: (3,3) 49: (4,4)
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Table[Count[conj[primeMS[n]],?OddQ]-Count[conj[primeMS[n]],?EvenQ],{n,1,50}]
Comments