A350942 Number of odd parts minus number of even conjugate parts of the integer partition with Heinz number n.
0, 1, 0, 1, 1, 0, 0, 3, -2, 1, 1, 2, 0, 0, -1, 3, 1, 0, 0, 3, -2, 1, 1, 2, -1, 0, 0, 2, 0, 1, 1, 5, -1, 1, -2, 0, 0, 0, -2, 3, 1, 0, 0, 3, 1, 1, 1, 4, -4, 1, -1, 2, 0, 0, -1, 2, -2, 0, 1, 1, 0, 1, 0, 5, -2, 1, 1, 3, -1, 0, 0, 2, 1, 0, 1, 2, -3, 0, 0, 5, -2, 1
Offset: 1
Keywords
Examples
First positions n such that a(n) = 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, together with their prime indices, are: 192: (2,1,1,1,1,1,1) 32: (1,1,1,1,1) 48: (2,1,1,1,1) 8: (1,1,1) 12: (2,1,1) 2: (1) 1: () 15: (3,2) 9: (2,2) 77: (5,4) 49: (4,4) 221: (7,6) 169: (6,6)
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Table[Count[primeMS[n],?OddQ]-Count[conj[primeMS[n]],?EvenQ],{n,100}]
Comments