A350943 Heinz numbers of integer partitions of which the number of even conjugate parts is equal to the number of odd parts.
1, 3, 6, 7, 13, 14, 18, 19, 26, 27, 29, 36, 37, 38, 42, 43, 53, 54, 58, 61, 63, 70, 71, 74, 78, 79, 84, 86, 89, 101, 105, 106, 107, 113, 114, 117, 122, 126, 130, 131, 139, 140, 142, 151, 156, 158, 162, 163, 171, 173, 174, 178, 181, 190, 193, 195, 199, 202, 210
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: () 3: (2) 6: (2,1) 7: (4) 13: (6) 14: (4,1) 18: (2,2,1) 19: (8) 26: (6,1) 27: (2,2,2) 29: (10) 36: (2,2,1,1) 37: (12) 38: (8,1) 42: (4,2,1) For example, the partition (6,3,2) has conjugate (3,3,2,1,1,1) and 1 = 1 so 195 is in the sequence.
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Select[Range[100],Count[primeMS[#],?OddQ]==Count[conj[primeMS[#]],?EvenQ]&]
Comments