cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350945 Heinz numbers of integer partitions of which the number of even parts is equal to the number of even conjugate parts.

Original entry on oeis.org

1, 2, 5, 6, 8, 9, 11, 14, 17, 20, 21, 23, 24, 26, 30, 31, 32, 36, 38, 39, 41, 44, 47, 56, 57, 58, 59, 66, 67, 68, 73, 74, 75, 80, 83, 84, 86, 87, 92, 96, 97, 102, 103, 104, 106, 109, 111, 120, 122, 124, 125, 127, 128, 129, 137, 138, 142, 144, 149, 152, 156
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
   1: ()
   2: (1)
   5: (3)
   6: (2,1)
   8: (1,1,1)
   9: (2,2)
  11: (5)
  14: (4,1)
  17: (7)
  20: (3,1,1)
  21: (4,2)
  23: (9)
  24: (2,1,1,1)
		

Crossrefs

These partitions are counted by A350948.
These are the positions of 0's in A350950.
A000041 = integer partitions, strict A000009.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 = conjugation using Heinz numbers.
A257991 = # of odd parts, conjugate A344616.
A257992 = # of even parts, conjugate A350847.
A316524 = alternating sum of prime indices.
The following rank partitions:
A325040: product = product of conjugate, counted by A325039.
A325698: # of even parts = # of odd parts, counted by A045931.
A349157: # of even parts = # of odd conjugate parts, counted by A277579.
A350848: # of even conj parts = # of odd conj parts, counted by A045931.
A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
A350945: # of even parts = # of even conjugate parts, counted by A350948.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],Count[conj[primeMS[#]],?EvenQ]==Count[primeMS[#],?EvenQ]&]

Formula

A257992(a(n)) = A350847(a(n)).