A350948 Number of integer partitions of n with as many even parts as even conjugate parts.
1, 1, 0, 3, 1, 5, 3, 7, 6, 10, 10, 18, 19, 27, 31, 40, 47, 65, 75, 98, 115, 142, 170, 217, 257, 316, 376, 458, 544, 671, 792, 952, 1129, 1351, 1598, 1919, 2259, 2681, 3155, 3739, 4384, 5181, 6064, 7129, 8331, 9764, 11380, 13308, 15477, 18047, 20944
Offset: 0
Keywords
Examples
The a(0) = 1 through a(8) = 6 partitions (empty column indicated by dot): () (1) . (3) (22) (5) (42) (7) (62) (21) (41) (321) (61) (332) (111) (311) (2211) (511) (521) (2111) (4111) (4211) (11111) (31111) (32111) (211111) (221111) (1111111) For example, both (3,2,1,1,1) and its conjugate (5,2,1) have exactly 1 even part, so are counted under a(8).
Crossrefs
Programs
-
Mathematica
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Table[Length[Select[IntegerPartitions[n],Count[#,?EvenQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]