A350952 The smallest number whose binary expansion has exactly n distinct runs.
0, 1, 2, 11, 38, 311, 2254, 36079, 549790, 17593311, 549687102, 35179974591, 2225029922430, 284803830071167, 36240869367020798, 9277662557957324543, 2368116566113212692990, 1212475681849964898811391, 619877748107024946567312382, 634754814061593545284927880191
Offset: 0
Keywords
Examples
The terms and their binary expansions begin: 0: () 1: 1 2: 10 11: 1011 38: 100110 311: 100110111 2254: 100011001110 36079: 1000110011101111 549790: 10000110001110011110 For example, 311 has binary expansion 100110111 with 5 distinct runs: 1, 00, 11, 0, 111.
Links
- Michael S. Branicky, Table of n, a(n) for n = 0..114
- Mathematics Stack Exchange, What is a sequence run? (answered 2011-12-01)
Crossrefs
The version for standard compositions is A351015.
A000120 counts binary weight.
A011782 counts integer compositions.
A242882 counts compositions with distinct multiplicities.
A318928 gives runs-resistance of binary expansion.
A334028 counts distinct parts in standard compositions.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct runs:
- A351202 = permutations of prime factors.
Programs
-
Mathematica
q=Table[Length[Union[Split[If[n==0,{},IntegerDigits[n,2]]]]],{n,0,1000}];Table[Position[q,i][[1,1]]-1,{i,Union[q]}]
-
PARI
a(n)={my(t=0); for(k=1, (n+1)\2, t=((t<
Andrew Howroyd, Feb 15 2022 -
Python
def a(n): # returns term by construction if n == 0: return 0 q, r = divmod(n, 2) if r == 0: s = "".join("1"*i + "0"*(q-i+1) for i in range(1, q+1)) assert len(s) == n*(n//2+1)//2 else: s = "1" + "".join("0"*(q-i+2) + "1"*i for i in range(2, q+2)) assert len(s) == ((n+1) + (n-1)*((n-1)//2+1))//2 return int(s, 2) print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 14 2022
Extensions
a(9)-a(19) from Michael S. Branicky, Feb 14 2022
Comments