cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350970 Triangle T(n,k) (n>=0, 0<=k<=n) read by rows: T(0,0)=T(1,1)=1; T(n,0) is the Euler number A000111(n-1) for n>=1; T(n,n-1) = T(n,n) = (n-2)! for n>=2; interior entries are given by T(n,k) = m*T(n-1,k-1)+(k+1)*T(n-1,k+1) where m = k if n+k is even or k-1 if n+k is odd.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 5, 8, 6, 6, 5, 16, 28, 40, 24, 24, 16, 61, 136, 180, 240, 120, 120, 61, 272, 662, 1232, 1320, 1680, 720, 720, 272, 1385, 3968, 7266, 12096, 10920, 13440, 5040, 5040, 1385, 7936, 24568, 56320, 83664, 129024, 100800, 120960, 40320, 40320, 7936, 50521, 176896, 408360, 814080, 1023120, 1491840, 1028160, 1209600, 362880, 362880
Offset: 0

Views

Author

N. J. A. Sloane, Mar 03 2022

Keywords

Comments

Triangle connects Euler numbers on left and factorial numbers on right.

Examples

			Triangle begins:
    1,
    1,    1,
    1,    1,    1,
    1,    2,    2,    2,
    2,    5,    8,    6,     6,
    5,   16,   28,   40,    24,    24,
   16,   61,  136,  180,   240,   120,   120,
   61,  272,  662, 1232,  1320,  1680,   720,  720,
  272, 1385, 3968, 7266, 12096, 10920, 13440, 5040, 5040,
  ...
This may also be constructed as a square array, with entries T(n,k), n >= 1, 0 <= k, whose columns have e.g.f. equal to sec(x)+tan(x) (if k=0) and sec(x)*tan(x)^(k-1)*(sec(x)+tan(x)) (if k>0):
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
2, 5, 8, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, ...
5, 16, 28, 40, 24, 24, 0, 0, 0, 0, 0, 0, 0, ...
16, 61, 136, 180, 240, 120, 120, 0, 0, 0, 0, 0, 0, ...
61, 272, 662, 1232, 1320, 1680, 720, 720, 0, 0, 0, 0, 0, ...
272, 1385, 3968, 7266, 12096, 10920, 13440, 5040, 5040, 0, 0, 0, 0, ...
...
		

References

  • A. Boutin, Query 2784, L'Intermédiaire des Mathématiciens, 11 (1904), 252-254.
  • E. Estanave, Query 2784, L'Intermédiaire des Mathématiciens, 11 (1904), pp. 117-118.

Crossrefs

The initial columns are A000111, A000111, A225689, A350971.
The diagonals, reading from the right, are (essentially) A000142, A000142, A002301, A006157, A002302, A350973, A002303, A350974, A350975.
Rows sums give A156142(n-1).
Cf. A007836.

Programs

  • Maple
    for n from 0 to 12 do
    T[n]:=Array(0..n,0);
    T[0,0] := 1;
    T[1,0] := 1; T[1,1] := 1;
    if n>1 then
      T[n,0] := T[n-1,1];
    for k from 1 to n-2 do
    m:=k; if ((n+k) mod 2) = 0 then m:=k-1; fi;
    T[n,k] := m*T[n-1,k-1] + (k+1)*T[n-1,k+1];
    od:
    T[n,n-1] := (n-1)*T[n-1,n-2];
    T[n,n] := T[n,n-1];
    fi;
    lprint( [seq(T[n,k],k=0..n)] );
    od:
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i=0,
         `if`(n=0, 1, 0), b(n, i-1)+b(n-1, n-i))
        end:
    T:= proc(n, k) option remember; `if`(n=0 and k=0, 1,
         `if`(k=0, b(n-1$2), `if`(n-k<=1, (n-1)!, (k+1)*
          T(n-1, k+1)+(k-irem(1+n+k, 2))*T(n-1, k-1))))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Mar 04 2022
    # To produce the square array, N. J. A. Sloane, Mar 05 2022:
    read(transforms):
    myegf := (f,M) -> SERIESTOLISTMULT(series(f,x,M));
    T:=proc(n,k,M) local i;
    if k=0 then myegf((sec(x)+tan(x)),M)[n];
    else
    myegf(sec(x)*tan(x)^(k-1)*(sec(x)+tan(x)),M)[n];
    fi;
    end;
    [seq(T(n,0,16),n=1..5)];
    for n from 1 to 8 do
    lprint([seq(T(n,k,16),k=0..12)]);
    od:
  • Mathematica
    b[n_, i_] := b[n, i] = If[i == 0,
         If[n == 0, 1, 0], b[n, i - 1] + b[n - 1, n - i]];
    T[n_, k_] := T[n, k] = If[n == 0 && k == 0, 1,
         If[k == 0, b[n - 1, n - 1], If[n - k <= 1, (n - 1)!, (k + 1)*
         T[n - 1, k + 1] + (k - Mod[1 + n + k, 2])*T[n - 1, k - 1]]]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 12 2022, Alois P. Heinz *)

Formula

If we ignore the n=0 row, then the e.g.f. for column 0 is sec(x)+tan(x), and for column k >= 1 it is sec(x)*tan(x)^(k-1)*(sec(x)+tan(x)). See the initial rows of the square array in the EXAMPLES section. - N. J. A. Sloane, Mar 05 2022
abs(Sum_{k=0..n} (-1)^k * T(n,k)) = A007836(n) for n>=2. - Alois P. Heinz, Mar 04 2022